Skip to main content
Log in

Three-dimensional surface geometries of the rabbit soleus muscle during contraction: input for biomechanical modelling and its validation

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

There exists several numerical approaches to describe the active contractile behaviour of skeletal muscles. These models range from simple one-dimensional to more advanced three-dimensional ones; especially, three-dimensional models take up the cause of describing complex contraction modes in a realistic way. However, the validation of such concepts is challenging, as the combination of geometry, material and force characteristics is so far not available from the same muscle. To this end, we present in this study a comprehensive data set of the rabbit soleus muscle consisting of the muscles’ characteristic force responses (active and passive), its three-dimensional shape during isometric, isotonic and isokinetic contraction experiments including the spatial arrangement of muscle tissue and aponeurosis–tendon complex, and the fascicle orientation throughout the whole muscle at its optimal length. In this way, an extensive data set is available giving insight into the three-dimensional geometry of the rabbit soleus muscle and, further, allowing to validate three-dimensional numerical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abbott BC, Baskin RJ (1962) Volume changes in frog muscle during contraction. J Physiol 161(3):379–391

    Google Scholar 

  • Agur AM, Ng-Thow-Hing V, Ball KA, Fiume E, McKee NH (2003) Documentation and three-dimensional modelling of human soleus muscle architecture. Clin Anat 4:285–293

    Article  Google Scholar 

  • Ahn AN, Full RJ (2002) A motor and a brake: two leg extensor muscles acting at the same joint manage energy differently in a running insect. J Theor Biol 205(3):379–389

    Google Scholar 

  • Albracht K, Arampatzis A, Baltzopoulos V (2008) Assessment of muscle volume and physiological cross-sectional area of the human triceps surae muscle in vivo. J Biomech 41(10):2211–2218

    Article  Google Scholar 

  • Asmussen G, Maréchal G (1989) Maximal shortening velocities, isomyosins and fibre types in soleus muscle of mice, rats and guinea-pigs. J Physiol 416(1):245–254

    Google Scholar 

  • Azizi E, Roberts TJ (2009) Biaxial strain and variable stiffness in aponeuroses. J Physiol 587(17):4309–4318

    Article  Google Scholar 

  • Azizi E, Brainerd EL, Roberts TJ (2008) Variable gearing in pennate muscles. Proc Natl Acad Sci USA 105(5):1745–1750

    Article  Google Scholar 

  • Barclay CJ (1996) Mechanical efficiency and fatigue of fast and slow muscles of the mouse. J Physiol 497(3):781–794

    Google Scholar 

  • Baskin RJ (1967) Changes of volume in striated muscle. Am Zool 7(3):593–601

    Google Scholar 

  • Baskin RJ, Paolini PJ (1964) Volume change accompanying passive stretch of frog muscle. Nature 204(4959):694–695

    Article  Google Scholar 

  • Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66(1):259–267

    Article  Google Scholar 

  • Biewener AA (1998a) Muscle function in vivo: a comparison of muscles used for elastic energy savings versus muscles used to generate mechanical power. Am Zool 38(4):703–717

    Google Scholar 

  • Biewener AA (1998b) Muscle-tendon stresses and elastic energy storage during locomotion in the horse. Comp Biochem Physiol Part B Biochem Mol Biol 120(1):73–87

    Article  Google Scholar 

  • Blemker SS, Pinsky PM, Delp SL (2005) A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. J Biomech 38(4):657–665

    Article  Google Scholar 

  • Böl M (2010) Micromechanical modelling of skeletal muscles: From the single fibre to the whole muscle. Arch Appl Mech 80(5): 557–567

    Google Scholar 

  • Böl M, Reese S (2008) Micromechanical modelling of skeletal muscles based on the finite element method. Comput Methods Biomech Biomed Eng 11(5):489–504

    Article  Google Scholar 

  • Böl M, Pipetz A, Reese S (2009) Finite element model for the simulation of skeletal muscle fatigue. Mat-wiss u Werktsofftech 40(1–2):5–12

    Article  Google Scholar 

  • Böl M, Stark H, Schilling N (2011a) On a phenomenological model for fatigue effects in skeletal muscles. J Theor Biol 281(1):122–132

    Article  Google Scholar 

  • Böl M, Sturmat M, Weichert C, Kober C (2011b) A new approach for the validation of skeletal muscle modelling using MRI data. Comput Mech 47(5):591–601

    Article  MATH  Google Scholar 

  • Böl M, Weikert R, Weichert C (2011c) A coupled electromechanical model for the excitation-dependent contraction of skeletal muscle. J Mech Behav Biomed Mater 4(7):1299–1310

    Article  Google Scholar 

  • Böl M, Kruse R, Ehret AE, Leichsenring K, Siebert T (2012) Compressive properties of passive skeletal muscle: the impact of precise sample geometry on parameter identification in inverse finite element analysis. J Biomech 45(15):2673–2679

    Article  Google Scholar 

  • Brown IE, Cheng EJ, Loeb GE (1999) Measured and modeled properties of mammalian skeletal muscle. II. The effects of stimulus frequency on force-length and force-velocity relationships. J Muscle Res Cell Motil 20(7):627–643

    Article  Google Scholar 

  • Bullimore SR, Leonard TR, Rassier DE, Herzog W (2007) History-dependence of isometric muscle force: effect of prior stretch or shortening amplitude. J Biomech 40(7):1518–1524

    Article  Google Scholar 

  • Calvo B, Ramírez A, Alonso A, Grasa J, Soteras F, Osta R, Muñoz MJ (2010) Passive nonlinear elastic behaviour of skeletal muscle: experimental results and model formulation. J Biomech 43(2):318–325

    Article  Google Scholar 

  • Chi SW, Hodgson J, Chen JS, Edgerton VR, Shin DD, Roiz RA, Sinha S (2010) Finite element modeling reveals complex strain mechanics in the aponeuroses of contracting skeletal muscle. J Biomech 43(7):1243–1250

    Article  Google Scholar 

  • Curtis N, Jones ME, Evans SE, Shi J, O’higgins P, Fagan MJ (2009) Predicting muscle activation patterns from motion and anatomy: modelling the skull of Sphenodon (Diapsida: Rhynchocephalia). J R Soc Interface 7(42):153–160

    Article  Google Scholar 

  • Ehret AE, Böl M, Itskov M (2011) A continuum constitutive model for the active behaviour of skeletal muscle. J Mech Phys Solids 59(3):625–636

    Article  MathSciNet  MATH  Google Scholar 

  • Eng CM, Smallwood LH, Rainiero MP, Lahey M, Ward SR, Lieber RL (2008) Scaling of muscle architecture and fiber types in the rat hindlimb. J Exp Biol 211(14):2336–2345

    Article  Google Scholar 

  • Fernandez JW, Buist ML, Nickerson DP, Hunter PJ (2005) Modelling the passive and nerve activated response of the rectus femoris muscle to a flexion loading: a finite element framework. Med Eng Phys 27(10):862–870

    Article  Google Scholar 

  • Fry NR, Gough M, Shortland AP (2004) Three-dimensional realisation of muscle morphology and architecture using ultrasound. Gait Posture 20(2):177–182

    Article  Google Scholar 

  • Fung L, Wong B, Ravichandiran K, Agur A, Rindlisbacher T, Elmaraghy A (2009) Three-dimensional study of pectoralis major muscle and tendon architecture. Clin Anat 22(4):500–508

    Article  Google Scholar 

  • García-Vallejo D, Schiehlen W (2012) 3D-simulation of human walking by parameter optimization. Arch Appl Mech 82(4):533–556

    Article  Google Scholar 

  • Geyer H, Herr H (2010) A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans Rehabil Eng 18(3):263–273

    Article  Google Scholar 

  • Ghafari AS, Meghdari A, Vossoughi GR (2009) Forward dynamics simulation of human walking employing an iterative feedback tuning approach. P I Mech Eng I-J Sys 223(3):289–297

    Google Scholar 

  • Gillis GB, Biewener AA (2002) Effects of surface grade on proximal hindlimb muscle strain and activation during rat locomotion. J Appl Physiol 93(5):1731–1743

    Google Scholar 

  • Gorb SN, Fischer MS (2000) Three-dimensional analysis of the arrangement and length distribution of fascicles in the triceps muscle of Galea musteloides (Rodentia, Cavimorpha). Zoomorphology 120(2):91–97

    Article  Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184(1):170–192

    Google Scholar 

  • Grasa J, Ramírez A, Osta R, Muñoz MJ, Soteras F, Calvo B (2011) A 3D active-passive numerical skeletal muscle model incorporating initial tissue strains. Validation with experimental results on rat tibialis anterior muscle. Biomech Model Mechanobiol 10(5): 779–787

    Google Scholar 

  • Günther M, Schmitt S, Wank V (2007) High-frequency oscillations as a consequence of neglected serial damping in Hill-type muscle models. Biol Cybern 97(1):63–79

    Article  MATH  Google Scholar 

  • Günther M, Röhrle O, Haeufle DFB, Schmitt S (2012) Spreading out muscle mass within a Hill-Type model: a computer simulation study. Comput Math Methods Med 2012:1–13

    Article  Google Scholar 

  • Hedenstierna S, Halldin P, Brolin K (2008) Evaluation of a combination of continuum and truss finite elements in a model of passive and active muscle tissue. Comput Methods Biomech Biomed Eng 11(6):627–639

    Article  Google Scholar 

  • Heemskerk AM, Strijkers GJ, Vilanova A, Drost MR, Nicolay K (2005) Determination of mouse skeletal muscle architecture using three-dimensional diffusion tensor imaging. Magn Reson Med 53(6):1333–1340

    Article  Google Scholar 

  • Heemskerk AM, Sinha TK, Wilson KJ, Ding Z, Damon BM (2009) Quantitative assessment of DTI-based muscle fiber tracking and optimal tracking parameters. Magn Reson Med 61(2):467–472

    Article  Google Scholar 

  • Herbert RD, Crosbie J (1997) Rest length and compliance of non-immobilised and immobilised rabbit soleus muscle and tendon. Eur J Appl Physiol Occup Physiol 76(5):472–479

    Article  Google Scholar 

  • Herzog W (2009) The biomechanics of muscle contraction: optimizing sport performance. Sport-Orthop Sport-Traumat 25(4):286–293

    Article  Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc B 126(843):136–195

    Article  Google Scholar 

  • Hill AV (1950) The dimensions of animals and their muscular dynamics. Sci Prog 38(150):209–230

    Google Scholar 

  • Hill TL, Eisenberg E, Chen YD, Podolsky RJ (1975) Some self-consistent two-state sliding filament models of muscle contraction. Biophys J 15(4):335–372

    Article  Google Scholar 

  • Houdijk H, Bobbert MF, de Haan A (2006) Evaluation of a Hill based muscle model for the energy cost and efficiency of muscular contraction. J Biomech 39(3):536–543

    Article  Google Scholar 

  • Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7(1):255–318

    Google Scholar 

  • Ishikawa M, Pakaslahti J, Komi PV (2007) Medial gastrocnemius muscle behavior during human running and walking. Gait Posture 25(3):380–384

    Article  Google Scholar 

  • Ito D, Tanaka E, Yamamoto S (2010) A novel constitutive model of skeletal muscle taking into account anisotropic damage. J Mech Behav Biomed Mater 3(1):85–93

    Article  Google Scholar 

  • Jeurissen B, Leemans A, Tournier JD, Jones DK, Sijbers J (2012) Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum Brain Mapp. doi:10.1002/hbm.22099

  • Johansson T, Meier P, Blickhan R (2000) A finite-element model for the mechanical analysis of skeletal muscles. J Theor Biol 206(1):131–149

    Google Scholar 

  • Jones DK, Knösche TR, Turner R (2012) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. NeuroImage. doi:10.1016/j.neuroimage.2012.06.081

  • Kan JH, Heemskerk AM, Ding Z, Gregory A, Mencio G, Spindler K, Damon BM (2009) DTI-based muscle fiber tracking of the quadriceps mechanism in lateral patellar dislocation. J Magn Reson Imaging 29(3):663–670

    Article  Google Scholar 

  • Kim SY, Boynton EL, Ravichandiran K, Fung LY, Bleakney R, Agur AM (2007) Three-dimensional study of the musculotendinous architecture of supraspinatus and its functional correlations. Clin Anat 20(6):648–655

    Article  Google Scholar 

  • Leon LM, Liebgott B, Agur AM, Norwich KH (2006) Computational model of the movement of the human muscles of mastication during opening and closing of the jaw. Comput Methods Biomech Biomed Eng 9(6):387–398

    Article  Google Scholar 

  • Lichtwark GA, Wilson AM (2005) A modified Hill muscle model that predicts muscle power output and efficiency during sinusoidal length changes. J Exp Biol 208(15):2831–2843

    Article  Google Scholar 

  • Lieber RL, Blevins FT (1989) Skeletal muscle architecture of the rabbit hindlimb: Functional implications of muscle design. J Morphol 199(1):93–101

    Article  Google Scholar 

  • Lu YT, Beldie L, Walker B, Richmond S, Middleton J (2011) Parametric study of a Hill-type hyperelastic skeletal muscle model. Proc Inst Mech Eng H J Eng Med 225(5):437–447

    Article  Google Scholar 

  • Maas H, Baan GC, Huijing PA (2001) Intermuscular interaction via myofascial force transmission: effects of tibialis anterior and extensor hallucis longus length on force transmission from rat extensor digitorum longus muscle. J Biomech 34(7): 927–940

    Google Scholar 

  • McMahon TA (1984) Muscles, reflexes, and locomotion. Princeton University Press, Princeton

    Google Scholar 

  • Mihata T, Gates J, McGarry MH, Lee J, Kinoshita M, Lee TQ (2009) Effect of rotator cuff muscle imbalance on forceful internal impingement and peel-back of the superior labrum: a cadaveric study. Am J Sport Med 37(11):2222–2227

    Article  Google Scholar 

  • Monti RJ, Roy RR, Zhong H, Edgerton VR (2003) Mechanical properties of rat soleus aponeurosis and tendon during variable recruitment in situ. J Exp Biol 206(19):3437–3445

    Article  Google Scholar 

  • Mörl F, Siebert T, Schmitt S, Blickhan R, Günther M (2012) Electro-mechanical delay in Hill-type muscle models. J Mech Med Biol 12(05):1250085-1-1250085-18

    Google Scholar 

  • Oomens CW, Maenhout M, van Oijen CH, Drost MR, Baaijens FP (2003) Finite element modelling of contracting skeletal muscle. Philos Trans R Soc B 358(1437):1453–1460

    Article  Google Scholar 

  • Osth J, Brolin K, Happee R (2011) Active muscle response using feedback control of a finite element human arm model. Comput Methods Biomech Biomed Eng 15(4):347–361

    Article  Google Scholar 

  • Pandy MG (2001) Computer modelling and simulation of human movement. Annu Rev Biomed Eng 3(1):245–273

    Article  Google Scholar 

  • Prado LG, Makarenko I, Andresen C, Krüger M, Opitz CA, Linke WA (2005) Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles. J Gen Physiol 126(5):461–480

    Article  Google Scholar 

  • Ranatunga KW, Thomas PE (1990) Correlation between shortening velocity, force–velocity relation and histochemical fibre-type composition in rat muscles. J Muscle Res Cell Motil 11(3): 240–250

    Google Scholar 

  • Ravichandiran K, Ravichandiran M, Oliver ML, Singh KS, McKee NH, Agur AM (2009) Determining physiological cross-sectional area of extensor carpi radialis longus and brevis as a whole and by regions using 3D computer muscle models created from digitized fiber bundle data. Comput Meth Prog Biomed 95(3):203–212

    Article  Google Scholar 

  • Rode C, Siebert T, Blickhan R (2009a) Titin-induced force enhancement and force depression: a ‘sticky-spring’ mechanism in muscle contractions? J Theor Biol 259(2):350–360

    Article  Google Scholar 

  • Rode C, Siebert T, Herzog W, Blickhan R (2009b) The effects of parallel and series elastic components on the active cat soleus force-length relationship. J Mech Med Biol 09(01):105–122

    Article  Google Scholar 

  • Röhrle O (2010) Simulating the electro-mechanical behavior of skeletal muscles. Comput Sci Eng 12(6):48–58

    Article  Google Scholar 

  • Röhrle O, Davidson JB, Pullan AJ (2008) Bridging scales: a three-dimensional electromechanical finite element model of skeletal muscle. SIAM J Sci Comput 30(6):2882–2904

    Article  MathSciNet  MATH  Google Scholar 

  • Röhrle O, Davidson JB, Pullan AJ (2012) A physiologically based, multi-scale model of skeletal muscle structure and function. Front Physiol 3(358):1–14

    Google Scholar 

  • Rome LC, Sosnicki AA, Gible DO (1990) Maximum velocity of shortening of three fibre types from horse soleus muscle: implications for scaling with body size. J Physiol 431:173–185

    Google Scholar 

  • Rosatelli AL, Ravichandiran K, Agur AM (2008) Three-dimensional study of the musculotendinous architecture of lumbar multifidus and its functional implications. Clin Anat 21(6):539–546

    Article  Google Scholar 

  • Schwenzer NF, Steidle G, Martirosian P, Schraml C, Springer F, Claussen CD, Schick F (2009) Diffusion tensor imaging of the human calf muscle: distinct changes in fractional anisotropy and mean diffusion due to passive muscle shortening and stretching. NMR Biomed 22(10):1047–1053

    Google Scholar 

  • Scott SH, Brown IE, Loeb GE (1996) Mechanics of feline soleus: I. Effect of fascicle length and velocity on force output. J Muscle Res Cell Motil 17(2):207–219

    Article  Google Scholar 

  • Siebert T, Rode C, Herzog W, Till O, Blickhan R (2008) Nonlinearities make a difference: comparison of two common Hill-type models with real muscle. Biol Cybern 98(2):133–143

    Article  MathSciNet  MATH  Google Scholar 

  • Siebert T, Günther M, Blickhan R (2012a) A 3D-geometric model for the deformation of a transversally loaded muscle. J Theor Biol 298:116–121

    Article  Google Scholar 

  • Siebert T, Till O, Blickhan R (2012b) Work partitioning of transversally loaded muscle: Experimentation and simulation. Comput Methods Biomech Biomed Eng 1–13 (in press)

  • Silva MT, Pereira AF, Martins JM (2011) An efficient muscle fatigue model for forward and inverse dynamic analysis of human movements. Procedia IUTAM 2(1):262–274

    Article  Google Scholar 

  • Sinha U, Sinha S, Hodgson JA, Edgerton RV (2011) Human soleus muscle architecture at different ankle joint angles from magnetic resonance diffusion tensor imaging. J Appl Physiol 110(3): 807–819

    Google Scholar 

  • Stark H, Schilling N (2010) A novel method of studying fascicle architecture in relaxed and contracted muscles. J Biomech 43(15):2897–2903

    Article  Google Scholar 

  • Tang CY, Tsui CP, Stojanovic B, Kojic M (2007) Finite element modelling of skeletal muscles coupled with fatigue. Int J Mech Sci 49(10):1179–1191

    Article  Google Scholar 

  • Tang CY, Zhang G, Tsui CP (2009) A 3D skeletal muscle model coupled with active contraction of muscle fibres and hyperelastic behaviour. J Biomech 42(7):865–872

    Article  Google Scholar 

  • Tournier JD, Mori S, Leemans A (2011) Diffusion tensor imaging and beyond. Magn Reson Med 65(6):1532–1556

    Article  Google Scholar 

  • van Noten P, van Leemputte M (2011) The effect of muscle length on force depression after active shortening in soleus muscle of mice. Eur J Appl Physiol 111(7):1361–1367

    Article  Google Scholar 

  • van Donkelaar CC, Willems PJ, Muijtjens AM, Drost MR (1999) Skeletal muscle transverse strain during isometric contraction at different lengths. J Biomech 32(8):755–762

    Google Scholar 

  • Vos SB, Jones DK, Jeurissen B, Viergever MA, Leemans A (2012) The influence of complex white matter architecture on the mean diffusivity in diffusion tensor MRI of the human brain. NeuroImage 59(3):2208–2216

    Google Scholar 

  • Wank V (1996) Modellierung und Simulation von Muskelkontraktionen für die Diagnose von Kraftfähigkeiten, 1st edn. Sport und Buch Strauss, Köln

  • Williams W (2011) Huxley’s model of muscle contraction with compliance. J Elast 105(1–2):365–380

    Google Scholar 

  • Wilson AM, McGuigan MP, Su A, van den Bogert AJ (2001) Horses damp the spring in their step. Nature 414(6866):895–899

    Article  Google Scholar 

  • Winter D (1993) Optische Verschiebungsmessung nach dem Objektrasterprinzip mit Hilfe eines flächenorientierten Ansatzes. Ph.D. thesis, Technische Universität Carolo-Wilhelmina zu Braunschweig

  • Winters JM (1990) Hill-based muscle models: A systems engineering perspective. In: Winters JM, Woo SL-Y (eds) Multiple muscle systems. Biomechanics and movement organization. Springer, New York, pp 69–93

    Chapter  Google Scholar 

  • Wrobel LC, Ginalski MK, Nowak AJ, Ingham DB, Fic AM (2010) An overview of recent applications of computational modelling in neonatology. Philos Trans R Soc A 368(1920):2817–2834

    Article  MathSciNet  MATH  Google Scholar 

  • Zajac FE (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17(4):359–411

    Google Scholar 

  • Zhang J, Zhang G, Morrison B, Mori S, Sheikh KA (2008) Magnetic resonance imaging of mouse skeletal muscle to measure denervation atrophy. Exp Neurol 212(2):448–457

    Article  Google Scholar 

  • Zöllner AM, Abilez OJ, Böl M, Kuhl E (2012) Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis. PLOS ONE 7(10):1–10

    Article  Google Scholar 

Download references

Acknowledgments

Partial support for this research was provided by the Deutsche Forschungsgemeinschaft (DFG) under Grants BO 3091/4-1 and SI 841/3-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Böl.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böl, M., Leichsenring, K., Weichert, C. et al. Three-dimensional surface geometries of the rabbit soleus muscle during contraction: input for biomechanical modelling and its validation. Biomech Model Mechanobiol 12, 1205–1220 (2013). https://doi.org/10.1007/s10237-013-0476-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-013-0476-1

Keywords

Navigation