Skip to main content

Advertisement

Log in

The ECORS-Truc Vert’08 nearshore field experiment: presentation of a three-dimensional morphologic system in a macro-tidal environment during consecutive extreme storm conditions

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

A large multi-institutional nearshore field experiment was conducted at Truc Vert, on the Atlantic coast of France in early 2008. Truc Vert’08 was designed to measure beach change on a long, sandy stretch of coast without engineering works with emphasis on large winter waves (offshore significant wave height up to 8 m), a three-dimensional morphology, and macro-tidal conditions. Nearshore wave transformation, circulation and bathymetric changes involve coupled processes at many spatial and temporal scales thus implying the need to improve our knowledge for the full spectrum of scales to achieve a comprehensive view of the natural system. This experiment is unique when compared with existing experiments because of the simultaneous investigation of processes at different scales, both spatially (from ripples to sand banks) and temporally (from single swash events to several spring-neap tidal cycles, including a major storm event). The purpose of this paper is to provide background information on the experiment by providing detailed presentation of the instrument layout and snapshots of preliminary results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Aagaard T, Kroon A, Andersen S, Moller Sorensen R, Quartel S, Vinther N (2005) Intertidal beach change during storm conditions; Egmond, The Netherlands. Mar Geol 218:65–80

    Article  Google Scholar 

  • Almar R, Castelle B, Ruessink BG, Senechal N, Bonneton P, Marieu V (2009) High-frequency video observation of two nearby double barred beaches under high-energy wave forcing. J Coast Res SI56:1706–1710

    Google Scholar 

  • Almar R, Castelle B, Ruessink BG, Senechal N, Bonneton P, Marieu V (2010) Two- and three-dimensional double-sandbar system behaviour under intense wave forcing and a meso-macro tidal range. Cont Shelf Res 30(7):781–792

    Article  Google Scholar 

  • Arnaud G, Mory M, Abadie S, Cassen M (2009) Use of a resistive rods network to monitor bathymetric evolution in the surf/swash zone. J Coast Res SI56:1781–1785

    Google Scholar 

  • Austin MJ, Masselink G (2006) Observations of morphological change and sediment transport on a steep gravel beach. Mar Geol 229:59–77

    Article  Google Scholar 

  • Austin MJ, Scott TM, Brown JW, Brown J, MacMahan J (2009) Macrotidal rip current experiment: circulation and dynamics. J Coast Res SI56:24–28

    Google Scholar 

  • Berni C, Mignot E, Michallet H, Dalla-Costa C, Grasso F, Lagauzère M (2009) Diversity of bed evolution at wave and tidal scales on Truc-Vert beach. J Coast Res SI56:1726–1730

    Google Scholar 

  • Blenkinsopp CE, Turner IL, Masselink G, Russell PE (2009) Field measurements of net sediment flux from individual swashes on a sandy beach. In: Proc. Coastal Dynamics 2009, Tokyo, paper no. 27

  • Blenkinsopp CE, Turner IL, Masselink G, Russell PE (2011) Swash zone sediment fluxes—field observations. Coast Eng 58:28–44

    Article  Google Scholar 

  • Bowen AJ (1969) The generation of longshore currents on a plane beach. J Mar Res 27:206–215

    Google Scholar 

  • Brander RW (1999) Field observations on the morphodynamic evolution of low wave energy rip current system. Mar Geol 157:199–217

    Article  Google Scholar 

  • Brander RW, Short AD (2000) Morphodynamics of a large-scale rip current system at Muriwai Beach, New Zealand. Mar Geol 165:27–39

    Article  Google Scholar 

  • Brown J, MacMahan JH, Reniers A, Thornton E (2009) Surfzone diffusivity on a rip channeled beach. J Geophys Res. doi:10.1029/2008JC005158

  • Bruneau N, Castelle B, Bonneton P, Pederos R, Almar R, Bonneton N, Bretel P, Parisot JP, Senechal N (2009) Field observations of an evolving rip current on a meso-macrotidal inner bar and rip morphology. Cont Shelf Res 29:1650–1662

    Article  Google Scholar 

  • Bryan KR, Bowen AJ (1996) Edge wave trapping and amplification on barred beaches. J Geophys Res 101(3):6543–6552

    Article  Google Scholar 

  • Bryan KR, Bowen AJ (1998) Bar-trapped edge waves and longshore currents. J Geophys Res 103(12):27,867–27,884

    Article  Google Scholar 

  • Bryan KR, Howd PA, Bowen AJ (1998) Field observations of trapped edge waves. J Geophys Res 103(1):1285–1305

    Article  Google Scholar 

  • Butel R, Dupuis H, Bonneton P (2002) Spatial variability of wave conditions on the French Aquitanian coast using in-situ data. J Coast Res SI36:96–108

    Google Scholar 

  • Butt T, Russell P, Turner I (2001) The influence of swash infiltration–exfiltration on beach face sediment transport: onshore or offshore? Coast Eng 42:35–52

    Article  Google Scholar 

  • Capo S, Parisot JP, Bujan S, Senechal N (2009) Short time morphodynamic response of the Truc Vert Beach to storm conditions. J Coast Res SI56:1741–1745

    Google Scholar 

  • Castelle B, Bonneton P, Sénéchal N, Dupuis H, Butel R, Michel D (2006) Dynamics of wave-induced currents over an alongshore non-uniform multiple-barred sandy beach on the Aquitanian Coast, France. Cont Shelf Res 26(1):113–131

    Article  Google Scholar 

  • Castelle B, Bonneton P, Dupuis H, Senechal N (2007) Double bar beach dynamics on the high-energy meso-macrotidal French Aquitanian Coast: a review. Mar Geol 245:141–159

    Article  Google Scholar 

  • Castelle B, Michallet H, Marieu V, Leckler F, Dubardier B, Lambert A, Berni C, Bonneton P, Barthélemy E, Bouchette F (2010) Laboratory experiment on rip current circulations over a moveable bed: drifter measurements. J Geophys Res 115:C12008. doi:10.1029/2010JC006343

    Article  Google Scholar 

  • Coco G, Murray AB (2007) Patterns in the sand: from forcing templates to self-organization. Geomorphology 91(3–4):271–290

    Article  Google Scholar 

  • Dalrymple RA (1978) Rip currents and their causes. In: Proceedings of ICCE, ASCE, Hamburg, pp 1414–1427

  • Davis RE (1991) Observing the general-circulation with floats. Deep-Sea Res 38:S531–S571

    Google Scholar 

  • De Melo Apoluceno D, Howa H, Dupuis H, Oggian G (2002) Morphodynamics of ridge and runnel systems during summer. J Coast Res SI36:222–230

    Google Scholar 

  • Dehouck A, Martiny N, Froidefond J-M, Sénéchal N, Bujan S (2009) New outcomes from spatial remote sensing during the ECORS experiment: towards validation of ocean color products and large-scale bathymetry mapping in a coastal zone. J Coast Res SI56:1756–1760

    Google Scholar 

  • Dodd N, Iranzo V, Reniers AJHM (2000) Shear instabilities of wave-driven alongshore currents. Rev Geophys 38(4):437

    Article  Google Scholar 

  • Dronen N, Deigaard R (2007) Quasi-three-dimensional modeling of the morphology of longshore bars. Coast Eng 54:197–215

    Article  Google Scholar 

  • Eckart C (1951) Surface waves on water of variable depth. Wave Rep. 100, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 99 pp

  • Emmanuel I, Parisot JP, Michallet H, Barthélemy E, Sénéchal N (2009) Sediment transport particular events and beach profile response. J Coast Res SI56:1766–1770

    Google Scholar 

  • Feddersen F, Gallagher E, Guza RT, Elgar S (2003) The drag coefficient, bottom roughness, and wave-breaking in the nearshore. Coast Eng 48:189–195

    Article  Google Scholar 

  • Gallagher EL, Elgar S, Guza RT (1998) Observations of sand bar evolution on a natural beach. J Geophys Res 103:3203–3215

    Article  Google Scholar 

  • Gallagher EL, Thornton EB, Stanton TP (2003) Sand bed roughness in the nearshore. J Geophys Res 108(C2):3039. doi:10.1029/2001JC001081

    Article  Google Scholar 

  • Gallagher EL, Elgar S, Guza RT, Thornton EB (2005) Estimating nearshore bedform amplitudes with altimeters. Mar Geol 216:51–57

    Article  Google Scholar 

  • Gallagher EL, MacMahan JH, Reniers Ad JHM (2011) Grain size variability on a rip-channeled beach. Marine Geol (in press)

  • Garnier R, Calvete D, Falques A, Caballeria M (2006) Generation and nonlinear evolution of shore oblique/transverse sand bars. J Fluid Mech 567:327–360

    Article  Google Scholar 

  • Grasmeijer BT, Van Rijn LC (2001) Sand transport in the surf zone of a dissipative beach. Coastal Dynamics, Lund, pp 102–111

    Google Scholar 

  • Grasso F, Michallet H, Barthelemy E, Certain R (2009) Physical modeling of intermediate cross-shore beach morphology: transients and equilibrium states. J Geophys Res 114:C09001. doi:10.1029/2009JC005308

    Article  Google Scholar 

  • Grasso F, Michallet H, Barthélémy E (2011) Sediment transport associated with morphological beach changes forced by irregular asymmetric-skewed waves. J Geophys Res 116:C03020. doi:10.1029/2010JC006550

    Article  Google Scholar 

  • Guillén J, Hoekstra P (1996) The “equilibrium” distribution of grain size fractions and its implication for cross-shore sediment transport: a conceptual model. Mar Geol 135(issues 1–4):15–33

    Article  Google Scholar 

  • Guillén J, Hoekstra P (1997) Sediment distribution in the Nerashore zone: grain size evolution in response to shoreface nourishment (Island of Terschelling, The Netherlands). Estuar, Coast Shelf Sci 45:639–652

    Article  Google Scholar 

  • Haller MC, Dalrymple DA (2001) Rip current instabilities. J Fluid Mech 433:161–192

    Google Scholar 

  • Haller MC, Dalrymple RA, Svendsen IA (2002) Experimental study of nearshore dynamics on a barred beach with rip channels. J Geophys Res 107(14):1–21

    Google Scholar 

  • Herbers THC, Elgar S, Guza RT, O’Reilly WC (1995) Infragravity-frequency (0.005–0.05Hz) motions on the shelf, II, free waves. J Phys Oceanogr 25:1063–1079.

    Google Scholar 

  • Holman RA, Bowen A (1984) Longshore structure of infragravity wave motions. J Geophys Res 89(C4):6446–6452

    Google Scholar 

  • Horn DP (2002) Beach ground water dynamics. Geomorphology 48:121–146

    Article  Google Scholar 

  • Howd PJ, Bowen AJ, Holman RA (1992) Edge waves in the presence of strong longshore currents. J Geophys Res 100:24,863–24,872

    Google Scholar 

  • Hsu TJ, Elgar S, Guza RT (2006) Wave-induced sediment transport and onshore sandbar migration. Coast Eng 53:817–824

    Article  Google Scholar 

  • Hurther D, Lemmin U (2001) A correction method for turbulence measurements with a 3D acoustic Doppler velocimetry profiler. J Atmos Ocean Technol 18(3):446–458

    Article  Google Scholar 

  • Johnson D, Pattiaratchi C (2004) Transit rip currents and nearshore circulation on a swell-dominated beach. J Geophys Res 109:C02026. doi:10.1029/2003JCC001798

    Article  Google Scholar 

  • Kroon A, Masselink G (2002) Morphodynamics of intertidal bar morphology on a macrotidal beach under low-energy wave conditions, North Lincolnshire, England. Mar Geol 190:591–608

    Article  Google Scholar 

  • Lafon V, De Melo Apoluceno D, Dupuis H, Michel D, Howa H, Froidefond JM (2004) Morphodynamics of nearshore rhythmic sandbars in a mixed-energy environment (SW France): I. Mapping beach changes using visible satellite imagery. Estuar Coast Shelf Sci 61:289–299

    Article  Google Scholar 

  • Long JW, Özkan-Haller HT (2009) Low-frequency characteristics of wave group-forced vortices. J Geophys Res 144:CO8004. doi:1029/2008JC004894

    Google Scholar 

  • Lorin J, Viguier J (1987) Hydrosedimentary conditions and present evolution of Aquitaine Coast. Bull Inst Bassin Aquitaine 41:95–108

    Google Scholar 

  • MacMahan JHM, Reniers Ad JHM, Thornton EB, Stanton TP (2004) Surf zone eddies coupled with rip current morphology. J Geophys Res 109:C07004. doi:10.1029/2003JC002083

    Article  Google Scholar 

  • MacMahan JHM, Thornton EB, Stanton TP, Reniers AJHM (2005) RIPEX-rip currents on a shore-connected shoal beach. Mar Geol 218:113–134

    Article  Google Scholar 

  • MacMahan JHM, Thornton Ed B, Reniers Ad JHM, Stanton TP, Symonds G (2008) Low-energy rip currents associated with small bathymetric variations. Mar Geol 255(3–4):156–164

    Article  Google Scholar 

  • MacMahan JHM, Brown J, Brown J, Thornton Ed, Reniers Ad, Stanton T, Henriquez M, Gallagher E, Morrison J, Austin JM, Scott TM, Senechal N (2010a) Mean Lagrangian flow behaviour on open coast rip channeled beaches. Mar Geol 268:1–15

    Article  Google Scholar 

  • MacMahan JH, Reniers AJHM, Thornton EB (2010b) Vortical surf zone fluctuations within 0(10) min period. J Geophys Res 115:C06007. doi:10.1029/2009JC005383

    Article  Google Scholar 

  • Masselink G, Short AD (1993) The effect of tide range on beach morphodynamics and morphology: a conceptual model. J Coast Res 9:785–800

    Google Scholar 

  • Masselink G, Austin M, Tinker J, O’Hara J, Russell P (2008) Cross-shore sediment transport and morphological response on a macrotidal beach with intertidal bar morphology, Truc Vert, France. Mar Geol 251:141–155

    Article  Google Scholar 

  • Masselink G, Russell PE, Turner IL, Blenkinsopp CE (2009) Net sediment transport and morphological change in the swash zone of a high-energy sandy beach from swash event to tidal cycle time scales. Mar Geol 267:18–35

    Article  Google Scholar 

  • Michallet H, Mory M, Piedra-Cueva I (2009) Wave-induced pore pressure measurements near a coastal structure. J Geophys Res 114:C06019. doi:10.1029/2008JC005071

    Article  Google Scholar 

  • Mignot E, Hurther D, Chassagneux F-X, Barnoud J-M (2009) A field study of the ripple vortex shedding process in the shoaling zone of a macro-tidal sandy beach. J Coast Res SI56:1776–1780

    Google Scholar 

  • Mory M, Michallet H, Bonjean D, Piedra-Cueva I, Barnoud J-M, Foray P, Abadie S, Breul P (2007) A field study of momentary liquefaction caused by saves around a coastal structure. J Waterw, Port, Coast Ocean Eng 133:28–38

    Article  Google Scholar 

  • Ngusaru AS, Hay AE (2004) Cross-shore migration of lunate megaripples during Duck94. J Geophys Res 109:C02006. doi:10.1029/2002JC001532

  • Noyes TJ, Guza RT, Elgar S, Herbers THC (2004) Field observations of shear waves in the surf zone. J Geophys Res 109:C01031. doi:10.1029/2002JC001761

    Article  Google Scholar 

  • Oltman-shay J, Guza RT (1987) Infragravity edge wave observations on two California beaches. J Phys Oceanogr 17(5):644–663

    Article  Google Scholar 

  • Oltman-Shay J, Howd PA, Birkemeier WA (1989) Shear instabilities of the mean longshore current 2. Field observations. J Geophys Res 94(C12):18031–18042

    Article  Google Scholar 

  • Parisot JP, Capo S, Castelle B, Bujan S, Moreau J, Gervais M, Réjas A, Hanquiez V, Almar R, Marieu V, Gaunet J, Gluard L, George I, Nahon A, Dehouck A, Certain R, Barthe P, Le Gall F, Bernardi PJ, Le Roy R, Pedreros R, Delattre M, Brillet J, Sénéchal N (2009) Evolution of a multi-barred sandy beaches in presence of very energetic events. J Coast Res SI56:1786–1790

    Google Scholar 

  • Pawka SS (1983) Island shadows in wave directional spectra. J Geophys Res 88(C4):2579–2591

    Article  Google Scholar 

  • Plant NG, Freilich MH, Holman RA (2001) Role of morphologic feedback in surf zone sandbar response. J Geophys Res 106(C1):973–989

    Article  Google Scholar 

  • Price TD, Ruessink BG (2008) Morphodynamic zone variability on a microtidal barred beach. Mar Geol 251:98–109

    Article  Google Scholar 

  • Quartel S, Ruessink BG, Kroon A (2007) Daily to seasonal cross-shore behaviour of quasi-persistent intertidal beach morphology. Earth Surf Process Landf 32:1293–1307

    Article  Google Scholar 

  • Ranasinghe R, Symonds K, Holman R (2004) Morphodynamic of intermediate beaches: a video imaging and numerical modeling study. Coast Eng 51:629–655

    Article  Google Scholar 

  • Reichmüth B, Anthony EJ (2007) Tidal influence on the intertidal bar morphology of two contrasting macrotidal beaches. Geomorphology 90:101–114

    Google Scholar 

  • Rejas A, Senechal N, Capo S, Parisot JP, MacMahan JHM, Bryan KR, Coco G (2009) Field and video observations of morphological change during a large-scale, multi-institutional experiment (ECORS). In: Proceedings of Australasian Coasts and Ports, Wellington, September 2009

  • Reniers Ad JHM, Roelvink JA, Thornton EB (2004) Morphodynamic modeling of an embayed beach under wave group forcing. J Geophys Res 109:C01030. doi:10.1029/2002JC001586

    Article  Google Scholar 

  • Reniers Ad JHM, MacMahan JHM, Thornton EB, Stanton TP (2006) Modelling infragravity motions on rip channel beach. Coast Eng 53:209–222

    Article  Google Scholar 

  • Reniers Ad JHM, MacMahan JHM, Thornton EB, Stanton TP (2007) Modeling of very low frequency motions during RIPEX. J Geophys Res. doi:10.1029/2005JC003122

  • Reniers Ad JHM, MacMahan JHM, Thornton EB, Stanton TP, Henriquez M, Brown JW, Brown JA, Gallagher E (2009) Surfzone surface retention on a rip channeled beach. J Geophys Res 114:C10010

    Article  Google Scholar 

  • Reniers Ad JHM, MacMahan JHM, Beron-Vera FJ, Olascoaga MJ (2010) Rip-current pulses tied to Lagrangian coherent structures. Geophys Res Lett 37:L05605. doi:10.1029/2009GL041443

    Article  Google Scholar 

  • Rubin DM (2004) A simple autocorrelation algorithm for determining grain size from digital images of sediment. J Sediment Res 74:160–165

    Article  Google Scholar 

  • Ruessink BG (2010) Observations of turbulence within a natural surf zone. J Phys Oceanogr 40(12):2696–2712

    Article  Google Scholar 

  • Ruessink BG, Kroon A (1994) The behaviour of a multiple bar system in the nearshore zone of Terschelling, the Netherlands: 1965–1993. Mar Geol 121:187–197

    Article  Google Scholar 

  • Ruessink BG, Houwman KT, Hoekstra P (1998) The systematic contribution of transporting mechanisms to the cross-shore sediment transport in water depths of 3 to 9 m. Mar Geol 152:295–324

    Article  Google Scholar 

  • Ruessink BG, Miles JR, Feddersen F, Guza RT, Elgar S (2001) Modeling the alongshore current on barred beaches. J Geophys Res 106:22,451–22,463

    Article  Google Scholar 

  • Ruessink BG, Coco G, Ranasinghe R, Turner IL (2007) Coupled and noncoupled behaviour of three-dimensional morphological patterns in a double sandbar system. J Geophys Res 112:C07002. doi:10.1029/2006JC003799

    Article  Google Scholar 

  • Ruggiero P, Komar PD, McDouglas WG, Marra JJ, Beach RA (2001) Wave runup, extreme water levels and erosion of properties backing beaches. J Coast Res 17(2):407–419

    Google Scholar 

  • Russell PE, Masselink G, Blenkinsopp C, Turner IL (2009) A comparison of berm accretion in the swash zone on sand and gravel beaches at the timescale of individual waves. J Coast Res SI56:1791–1795

    Google Scholar 

  • Ruz M-H, Hequette A, Maspataud A (2009) Identifying forcing conditions responsible for foredune erosion on the northern coast of France. J Coast Res SI56:356–360

    Google Scholar 

  • Ryrie SC (1983) Longshore motion due to an obliquely incident wave group. J Fluid Mech 137:273–284

    Article  Google Scholar 

  • Saulter AN, Russell PE, Gallagher EL, Miles JR (2003) Observations of bed level change in a saturated surf zone. J Geophys Res 108(C4):3112. doi:10.1029/2000JC000684

    Article  Google Scholar 

  • Schmidt WE, Guza RT, Slinn DN (2005) Surf zone currents over irregular bathymetry: drifter observations and numerical simulations. J Geophys Res 110:C12015. doi:10.1029/2004JC002421

  • Senechal N, Dupuis H, Bonneton P, Howa H, Pedreros R (2001) Observation of irregular wave transformation in the surf zone over a gently sloping sandy beach on the French Atlantic coastline. Oceanol Acta 24:545–556

    Article  Google Scholar 

  • Senechal N, Bonneton P, Dupuis H (2002) Field experiment on secondary wave generation on a barred beach and the consequent evolution of energy dissipation on the beach face. Coast Eng 46:233–247

    Article  Google Scholar 

  • Senechal N, Dupuis H, Bonneton P (2004) Preliminary hydrodynamic results of a field experiment on a barred beach, Truc Vert beach on October 2001. Ocean Dyn 54:408–414

    Article  Google Scholar 

  • Senechal N, Gouriou T, Castelle B, Parisot J-P, Capo S, Bujan S, Howa H (2009) Morphodynamic response of a meso macrotidal intermediate beach based on a long term data set. Geomorphology 107:263–274. doi:10.1016/j.geomorph.2008.12.016

    Article  Google Scholar 

  • Sénéchal N, Coco G, Bryan K, Holman RA (2011) Wave runup under extreme storm conditions. J Geophys Res Oceans. doi:10.1029/2010JC006814

  • Smit MWJ, Reniers AJHM, Ruessink BG, Roelvink JA (2008) The morphological response of a nearshore double sandbar system to constant wave forcing. Coast Eng 55:761–770

    Article  Google Scholar 

  • Spydell M, Feddersen F, Guza RT, Schmidt WE (2007) Observing surf-zone dispersion with drifters. J Phys Oceanogr 37(12):2920–2939

    Article  Google Scholar 

  • Symonds G, Ranasinghe R (2000) On the formation of rip currents on a plane beach, ICCE, Sydney, Australia, ASCE, pp 468–481

  • Thomas S, Ridd PV (2004) Review of methods to measure short time scale sediment accumulation. Mar Geol 207(1–4):95–114

    Article  Google Scholar 

  • Thornton EB, Kim CS (1993) Longshore current and wave height modulation at tidal frequency inside the surf zone. J Geophys Res 98:16,509–16,520

    Google Scholar 

  • Thornton EB, Humiston RT, Birkemeier W (1996) Bar/trough generation on a natural beach. J Geophys Res 101(C5):12,097–12,110

    Article  Google Scholar 

  • Thornton E, Dalrymple T, Drake T, Gallagher E, Guza B, Hay A, Holman R, Kaihatu J, Lippmann T, Ozkan-Haller T (2000) State of nearshore processes research: II. Technical Report NPS-OC-00-001 Naval Postgraduate School, Monterey, California 93943

  • Thornton E, Mac Mahan JH, Sallenger AH Jr (2007) Rip currents, mega-cusps, and eroding dunes. Mar Geol 1–4:151–167

    Article  Google Scholar 

  • Tissier M, Bonneton P, Almar R, Castelle B, Bonneton N (2009) Field observations of wave celerity in the surf zone. In: Proc. 19th CFM Congress, France, 6p

  • Turner IL, Nielsen P (1997) Rapid watertable fluctuations: implications for swash zone sediment mobility. Coast Eng 32:45–59

    Article  Google Scholar 

  • Turner IL, Whyte D, Ruessink BG, Ranasinghe R (2007) Observations of rip spacing, persistence and mobility at a long straight coastline. Mar Geol 236(3–4):209–221

    Article  Google Scholar 

  • Turner IL, Russell PE, Butt T (2008) Measurement of wave-by-wave bed-levels in the swash zone. Coast Eng 55:1237–1242

    Article  Google Scholar 

  • Turner IL, Russell PE, Butt T, Masselink G, Blenkinsopp CE (2009) In-situ estimates of net sediment flux per swash: reply to discussion by TE Baldock of “Measurement of wave-by-wave bed-levels in the swash zone. Coast Eng 56:1009–1012

    Article  Google Scholar 

  • Van Enckevort IMJ, Ruessink BG (2003a) Video observations of nearshore bar behaviour, part I: alongshore uniform variability. Cont Shelf Res 23:501–512

    Article  Google Scholar 

  • Van Enckevort IMJ, Ruessink G (2003b) Video observations of nearshore bar behaviour, part II: alongshore non-uniform variability. Cont Shelf Res 23:513–532

    Article  Google Scholar 

  • Weir FM, Hughes MG, Baldock TE (2006) Beachface and berm morphodynamics fronting a coastal lagoon. Geomorphology 82:331–346

    Article  Google Scholar 

  • Wright LD, Short AD (1984) Morphodynamic variability of surf zones and beaches: a synthesis. Mar Geol 56:93–118

    Article  Google Scholar 

Download references

Acknowledgements

We thank all those who have given financial support for this field experiment, in particular the French DGA. GM, PR and IT gratefully acknowledge funding from the UK Natural Environment Research Council (NERC; NE/F009275/1) and the Australian Research Council (ARC; DP0770118) and the assistance of their excellent field team. JHMM, AJHMR and EG gratefully acknowledge the funding from the USA NSF and the assistance of their team. BGR was funded by the Netherlands Organisation for Scientific Research (NWO) under project 864.04.007. We should like to thank NIWA (Hamilton—New Zealand) for providing support in the installation of the video system. We are most grateful to the lifeguards (CRS/MNS) for providing support during the field experiment. We thank the mayor of the city of Lege-Cap Ferret, Mr Sammarcelli, and his technical staff for providing logistic support. We also really appreciate the support of the French National Forest Office (ONF). Finally, we would like to point out that the list of authors is representative of most of the institutes involved in the field experiment but does not include everyone who contributed to the success of this field experiment. We are sincerely grateful to all the researchers, engineers, technicians, military personnel and students who made the field experiment possible. We greatly appreciated their invaluable help in making this field experiment a success despite the difficult weather conditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Senechal.

Additional information

Responsible Editor: Franciscus Colijn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senechal, N., Abadie, S., Gallagher, E. et al. The ECORS-Truc Vert’08 nearshore field experiment: presentation of a three-dimensional morphologic system in a macro-tidal environment during consecutive extreme storm conditions. Ocean Dynamics 61, 2073–2098 (2011). https://doi.org/10.1007/s10236-011-0472-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-011-0472-x

Keywords

Navigation