Skip to main content

Advertisement

Log in

A multiresolution method for climate system modeling: application of spherical centroidal Voronoi tessellations

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

During the next decade and beyond, climate system models will be challenged to resolve scales and processes that are far beyond their current scope. Each climate system component has its prototypical example of an unresolved process that may strongly influence the global climate system, ranging from eddy activity within ocean models, to ice streams within ice sheet models, to surface hydrological processes within land system models, to cloud processes within atmosphere models. These new demands will almost certainly result in the develop of multiresolution schemes that are able, at least regionally, to faithfully simulate these fine-scale processes. Spherical centroidal Voronoi tessellations (SCVTs) offer one potential path toward the development of a robust, multiresolution climate system model components. SCVTs allow for the generation of high-quality Voronoi diagrams and Delaunay triangulations through the use of an intuitive, user-defined density function. In each of the examples provided, this method results in high-quality meshes where the quality measures are guaranteed to improve as the number of nodes is increased. Real-world examples are developed for the Greenland ice sheet and the North Atlantic ocean. Idealized examples are developed for ocean–ice shelf interaction and for regional atmospheric modeling. In addition to defining, developing, and exhibiting SCVTs, we pair this mesh generation technique with a previously developed finite-volume method. Our numerical example is based on the nonlinear, shallow-water equations spanning the entire surface of the sphere. This example is used to elucidate both the po tential benefits of this multiresolution method and the challenges ahead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Adcroft A, Campin J, Hill C, Marshall J (2004) Implementation of an atmosphereocean general circulation model on the expanded spherical cube. Mon Weather Rev 132:2845–2863

    Article  Google Scholar 

  • Bamber JL, Hardy RJ, Joughin I (2000) An analysis of balance velocities over the Greenland ice sheet and comparison with synthetic aperture radar interferometry. J Glaciol 46:67–74

    Article  Google Scholar 

  • Bell RE (2008) The role of subglacial water in ice-sheet mass balance. Nat Geosci 1:297–304

    Article  Google Scholar 

  • Bonaventura L, Ringler T (2005) Analysis of discrete shallow-water models on geodesic Delaunay grids with c-type staggering. Mon Weather Rev 133:2351–2373

    Article  Google Scholar 

  • Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006) The community climate system model version 3 (CCSM3). J Climate 19:2122–2143

    Article  Google Scholar 

  • Comblen R, Legrand S, Deleersnijder E, Legat V (2008) A finite element method for solving the shallow water equations on the sphere. Ocean Model. doi:10.1016/j.ocemod.2008.05.004

  • Du Q, Ju L (2005) Finite volume methods on spheres and spherical centroidal Voronoi meshes. SIAM J Numer Anal 43:1673–1692

    Article  Google Scholar 

  • Du Q, Wang D (2003) Tetrahedral mesh generation and optimization based on centroidal Voronoi tessellations. Int J Numer Methods Eng 56:1355–1373

    Article  Google Scholar 

  • Du Q, Wang D (2005) Anisotropic centroidal Voronoi tessellations and their applications. SIAM J Sci Comput 26:737–761

    Article  Google Scholar 

  • Du Q, Faber V, Gunzburger M (1999) Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev 41:637–676

    Article  Google Scholar 

  • Du Q, Gunzburger M, Ju L (2003a) Constrained centroidal Voronoio tessellations on general surfaces. SIAM J Sci Comput 24:1488–1506

    Article  Google Scholar 

  • Du Q, Gunzburger M, Ju L (2003b) Voronoi-based finite volume methods, optimal Voronoi meshes and PDEs on the sphere. Comput Methods Appl Mech Eng 192:3933–3957

    Article  Google Scholar 

  • Du Q, Wang D, Huang Z (2005) Mesh and solver coadaptation in finite element methods for anisotropic problems. Numer Methods Partial Differ Equ 21:859–874

    Article  Google Scholar 

  • Field D (2000) Quantitative measures for initial meshes. Int J Numer Methods Eng 47:887–906

    Article  Google Scholar 

  • Gnanadesikan A (1999) A simple predictive model for the structure of the oceanic pycnocline. Science 283:2077–2079

    Article  Google Scholar 

  • Gersho A, Gray R (1992) Vector quantization and signal compression. Kluwer, Boston

    Google Scholar 

  • Giraldo F, Warburton T (2008) A high-order triangular discontinuous Galerkin oceanic shallow water model. Int J Numer Methods Fluids 56:899–925

    Article  Google Scholar 

  • Hallberg R, Gnanadesikan A (2006) The role of eddies in determining the structure and response of the wind-driven southern hemisphere overturning: results from the modeling eddies in the southern ocean (MESO) project. J Phys Oceanogr 36:2232–2252

    Article  Google Scholar 

  • Holland PR, Jenkins A, Holland DM (2008) The response of ice shelf basal melting to variation in ocean temperature. J Climate 21:2558–2572

    Article  Google Scholar 

  • International Panel on Climate Change (2007) Climate change 2007: the scientific basis. International Panel on Climate Change, Valencia

    Google Scholar 

  • Joughin I, Gray L, Bindschadler R, Price S, Morse D, Hulbe C, Mattar K, Werner C (1999) Tributaries of West Antarctic ice streams revealed by RADARSAT interferometry. Science 286:283–286

    Article  Google Scholar 

  • Ju L, Gunzburger M, Zhao W-D (2006) Adaptive finite element methods for elliptic PDEs based on conforming centroidal Voronoi Delaunay triangulations. SIAM J Sci Comput 28:2023–2053

    Article  Google Scholar 

  • Lipscomb WH, Ringler TD (2005) An incremental remapping transport scheme on a spherical geodesic grid. Mon Weather Rev 133:2335–2350

    Article  Google Scholar 

  • Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28:129–137

    Article  Google Scholar 

  • MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proc. fifth Berkeley symposium on mathematical statistics and probability, vol I. University of California, Berkeley, pp 281–297

    Google Scholar 

  • McGregor JL (1996) Semi-Lagrangian advection on a conformal cubic grid. Mon Weather Rev 124:1311–1322

    Article  Google Scholar 

  • Maltrud ME, McClean JL (2004) An eddy-resolving global 1/10 degree ocean simulation. Ocean Model 8:31–54

    Article  Google Scholar 

  • Nair R, Thomas S, Loft R (2005) A discontinuous Galerkin global shallow water model. Mon Weather Rev 133:867–888

    Google Scholar 

  • Newman BD, Wilcox BP, Archer S, Breshears DD, Dahm CN, Duffy CJ, McDowell NG, Phillips FM, Scanlon BR, Vivoni ER (2006) The ecohydrology of arid and semiarid environments: a scientific vision. Water Resour Res 42:W06302. doi:10.1029/2005WR004141

    Article  Google Scholar 

  • Okabe A, Boots B, Sugihara K, Chiu S (2000) Spatial tessellations: concepts and applications of Voronoi diagrams, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Randall DA, Ringler TD, Heikes RP, Jones P, Baumgardner J (2002) Climate modeling with spherical geodesic grids. Comput Sci Eng 4:32–41

    Article  Google Scholar 

  • Renka R (1999) ALGORITHM 772. STRIPACK: Delaunay triangulation and Voronoi diagrams on the surface of a sphere. ACM Trans Math Softw 23:416–434

    Article  Google Scholar 

  • Rignot E, Bamber JL, van den Broeke MR, Davis C, Li Y, van de Berg WJ, van Meijgaard E (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat Geosci 1:106–110

    Article  Google Scholar 

  • Rignot E, Casassa G, Gogineni P, Krabill W, Rivera A, Thomas R (2004) Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys Res Lett 31(18):L18401. doi:10.1029/2004GL020697

    Article  Google Scholar 

  • Ringler TD, Heikes RP, Randall DA (2000) Modeling the atmospheric general circulation using a spherical geodesic grid: a new class of dynamical cores. Mon Weather Rev 128:2471–2490

    Article  Google Scholar 

  • Satoh M, Matsuno T, Tomita H, Miura H, Nasuno T, Iga S (2008) Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J Comput Phys 227:3486–3514

    Article  Google Scholar 

  • Schoof C (2007) Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J Geophys Res 112(F3):F03S28

    Article  Google Scholar 

  • Smith RD, Maltrud ME, Bryan FO, Hecht MW (2000) Numerical simulation of the north atlantic ocean at 1/10. J Phys Oceanogr 30:1532–1561

    Article  Google Scholar 

  • St-Cyr A, Jablonowski C, Dennis JM, Tufo HM, Thomas SJ (2007) A comparison of two shallow water models with non-conforming adaptive grids. Mon Weather Rev 136:1898–1922

    Article  Google Scholar 

  • Stuhne G, Peltier W (2006) A robust unstructured grid discretization for 3-dimensional hydrostatic flows in spherical geometry: a new numerical structure for ocean general circulation modeling. J Comput Phys 213:704–729

    Article  Google Scholar 

  • Tomita H, Tsugawa M, Satoh M, Goto K (2001) Shallow water model on a modified icosahedral geodesic grid by using spring dynamics. J Comput Phys 174:579–613

    Article  Google Scholar 

  • Tomita H, Miura H, Iga S, Nasuno T, Satoh M (2007) A global cloud-resolving simulation: preliminary results from an aqua planet experiment. Geophys Res Lett 32:L08805. doi:10.1029/2005GL022459

    Article  Google Scholar 

  • Williamson DL, Drake JB, Hack J, Jacob R, Swartztrauber PN (1992) A standard test for numerical approximation to the shallow water equations in spherical geometry. J Comput Phys 102:211–224

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the DOE Office of Science Climate Change Prediction Program through DE-FG02-07ER64431, DE-FG02-07ER64432, and DOE 07SCPF152. The authors would like to thank Dr. Sebastien Legrand and two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Ringler.

Additional information

Responsible Editor: Eric Deleersnijder

LA-UR-08-05303.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ringler, T., Ju, L. & Gunzburger, M. A multiresolution method for climate system modeling: application of spherical centroidal Voronoi tessellations. Ocean Dynamics 58, 475–498 (2008). https://doi.org/10.1007/s10236-008-0157-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-008-0157-2

Keywords

Navigation