Skip to main content
Log in

Ion-channels on parasite muscle: pharmacology and physiology

  • Review
  • Published:
Invertebrate Neuroscience

Abstract

Ion-channels are essential components of excitable cells. This fact has been exploited in the development of anthelmintic agents; the majority of which act on nematode ion channels. The purpose of this review is to describe the site of action of some frequently used anthelmintic compounds: nAChRs and levamisole/pyrantel; Glu-Cls and avermectins/mylbemycins; GABA receptors and piperazine. Also described is some of the physiological and pharmacological data on other nematode muscle ion-channels which may prove attractive targets for future anthelmintic development: Ca2+ activated Cl channels; peptide gated chloride Cl channels; Ca2+ channels and potassium channels. Emphasis is placed on the pharmacological and physiological data from parasite tissue. Information on the genes involved in ion-channel formation and modulation are reviewed in detail elsewhere in this issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adelsberger H, Scheuer T, Dudel J (1997) A patch clamp study of a glutamatergic chloride channel on pharyngeal muscle of the nematode, Ascaris suum. Neurosci Lett 230:183–186

    Article  PubMed  CAS  Google Scholar 

  • Arena JP, Liu KK, Paress PS, Cully DF (1991) Avermectin-sensitive chloride currents induced by Caenorhabditis elegans RNA in Xenopus oocytes. Mol Pharmacol 40:368–374

    PubMed  CAS  Google Scholar 

  • Arena JP, Liu KK, Paress PS, Cully DF (1992) Expression of a glutamate-activated chloride current in Xenopus oocytes injected with Caenorhabditis elegans RNA: evidence for modulation by avermectin. Mol Brain Res 15:339–348

    Article  PubMed  CAS  Google Scholar 

  • Bamber BA, Richmond JE, Otto JF, Jorgensen EM (2005) The composition of the GABA receptor at the Caenorhabditis elegans neuromuscular junction. Br J Pharmacol 144:502–509

    Article  PubMed  CAS  Google Scholar 

  • Brown LA, Jones AK, Buckingham SD, Mee CJ, Sattelle DB (2006) Contributions from Caenorhabditis elegans functional genetics to antiparasitic drug target identification and validation: nicotinic acetylcholine receptors, a case study. Int J Parasitol 36:617–24

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Ann Rev Cell Dev Biol 16:521–555

    Article  CAS  Google Scholar 

  • Changeux JP, Bessis A, Bourgeois JP, Corringer PJ, Devillers-Thiery A, Eisele JL, Kerszberg M, Lena C, Le Novere N, Picciotto M, Zoli M (1996) Nicotinic receptors and brain plasticity. Cold Spring Harb Symp Quant Biol 61:343–362

    PubMed  CAS  Google Scholar 

  • Dale VM, Martin RJ (1995) Oxantel-activated single channel currents in the muscle membrane of Ascaris suum. Parasitology 110:437–448

    PubMed  CAS  Google Scholar 

  • Duittoz AH, Martin RJ (1989) SR95103 acts as a GABA antagonist in Ascaris suum muscle. Br J Pharmacol 97:490

    Google Scholar 

  • Duittoz AH, Martin RJ (1990) Effects of the arylaminopyridazine-GABA derivatives, SR95103 and SR95531 on the Ascaris muscle GABA receptor: the relative potency of the antagonists in Ascaris is different to that at vertebrate GABAA receptors. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 98:417–422

    Google Scholar 

  • Duittoz AH, Martin RJ (1991a) Effects of SR95103 on GABA-activated single-channel currents from Ascaris suum muscle. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 98:423–432

    Article  Google Scholar 

  • Duittoz AH, Martin RJ (1991b) Antagonist properties of arylaminopyridazine GABA derivatives at the Ascaris muscle GABA-receptor. J Exp Biol 159:149–164

    PubMed  CAS  Google Scholar 

  • Feng Z, Li W, Ward A, Piggott BJ, Larkspur ER, Sternberg PW, Shawn Xu XZ (2006) A C. elegans model of nicotine-dependent behaviour: regulation by TRP-family channels. Cell 127:460–462

    Article  CAS  Google Scholar 

  • Fox AP, Nowycky MC, Tsien RW (1987) Single-channel recordings of three types of calcium channels in chick sensory neurons. J Physiol 394:173–200

    PubMed  CAS  Google Scholar 

  • Guest M, Bull K, Walker RJ, Amliwala K, O’connor, V., Harder A, Holden-Dye L, Hopper NA (2007) The calcium-activated potassium channel, SLO-1, is required for the action of the novel cyclo-octadepsipeptide anthelmintic, emodepside, in Caenorhabditis elegans. Int J Parasitol (in press)

  • Green KA, Falconer SWP, Cottrell GA (1994) The neuropeptide phe-met-arg-phe-nh2 (fmrfamide) directly gates 2 ion channels in an identified Helix neuron. Pflugers Arch Eur J Physiol 428:232–240

    Article  CAS  Google Scholar 

  • Harrow ID, Gration KAF (1985) Mode of action of the anthelmitics morantel, pyrantel and levamisole in the muscle cell membrane of the nematode Ascaris suum. Pestic Sci 16:662–672

    Article  CAS  Google Scholar 

  • Hobson AD, Stephenson W, Beadle LC (1952a) Studies on the physiology of Ascaris lumbricoides I. The relation of total osmotic pressure, conductivity and chloride content of the body fluid to that of the external environment. J Exp Biol 29:1–21

    CAS  Google Scholar 

  • Hobson AD, Stephenson W, Eden A (1952b) Studies on the physiology of Ascaris lumbricoides II. The inorganic composition of the body fluid in relation to that of the environment. J Exp Biol 29:22–29

    CAS  Google Scholar 

  • Holden-Dye L, Walker RJ (1990) Avermectin and avermectin derivatives are antagonists at the 4-aminobutyric acid (GABA) receptor on the somatic muscle cells Ascaris-is this the site of anthelmintic action? Parasitology 101:265–271

    PubMed  CAS  Google Scholar 

  • Holden-Dye L, Hewitt GM, Wann KT, Krogsgaard-Larsen P, Walker RJ (1988) Studies involving avermectin and the 4-aminobutyric acid (GABA) receptor of Ascaris suum muscle. Pestic Sci 24:231–245

    Article  CAS  Google Scholar 

  • Holden-Dye L, Krogsgaard-Larsen P, Neilsen L, Walker RJ (1989) GABA receptors on the somatic muscle cells of the parasitic nematode, Ascaris suum: stereoselectivity indicates similarity to a GABA-type agonist recognition site. Br J Pharmacol 98:841–850

    PubMed  CAS  Google Scholar 

  • Holden-Dye L, Brownlee DJA, Walker RJ (1997) The effects of the peptide kpnfirfamide (pf4) on the somatic muscle cells of the parasitic nematode Ascaris suum. Br J Pharmacol 120:379–386

    Article  PubMed  CAS  Google Scholar 

  • Hotez PJ, Molyneux DH, Fenwick A, Kumaresan J, Sachs SE, Sachs JD, Savioli L (2007) Control of neglected tropical diseases. N Engl J Med 357(10):1018–27

    Article  PubMed  CAS  Google Scholar 

  • Jones AK, Sattelle DB (2004) Functional genomics of the nicotinic acetylcholine receptor gene family of the nematode, Caenorhabditis elegans. Bioessays 26(1):39–49

    Article  PubMed  CAS  Google Scholar 

  • Jospin M, Jacuemond V, Mariol MC, Segalat L, Allard B (2002) The L-type voltage-dependent Ca2+ channel EGL-19 controls body wall function in Caenorhabditis elegans. J Cell Biol 159:337–348

    Article  PubMed  CAS  Google Scholar 

  • Kaplan RM (2004) Drug resistance in nematodes of veterinary importance: a status report. Trends Parasitol 20(10):477–81

    Article  PubMed  CAS  Google Scholar 

  • McLeod RS (1994) Costs of major parasites to the Australian livestock industries. Int J Parasitol 25(11):1363–1367

    Article  Google Scholar 

  • McVeigh P, Leech S, Mair GR, Marks NJ, Geary TG, Maule AG (2005) Analysis of FMRFamide-like peptide (FLP) diversity in phylum Nematoda. Int J Parasitol 35:1043–1060

    Article  PubMed  CAS  Google Scholar 

  • Martin RJ (1980) The effect of γ-aminobutyric acid on the input conductance and membrane potential of Ascaris muscle. Br J Pharmacol 71:99–106

    PubMed  CAS  Google Scholar 

  • Martin RJ (1985) γ-Aminobutyric acid- and piperazine-activated single channel currents from Ascaris suum body muscle. Br J Pharmacol 84:455–461

    Google Scholar 

  • Martin RJ (1987) The γ-Aminobutyric acid receptor of Ascaris as a target for anthelmintics. Biochem Soc Trans 17:61–65

    Google Scholar 

  • Martin RJ (1993) Neuromuscular transmission in nematode parasites and antinematodal drug action. Pharmacol Ther 58(1):13–50

    Article  PubMed  CAS  Google Scholar 

  • Martin RJ, Pennington AJ (1988) Effect of dihydroavermectin-b1 on Cl single channel currents in Ascaris. Pestic Sci 24:90–91

    Google Scholar 

  • Martin RJ, Pennington AJ (1989) A patch-clamp study of effects of dihydroavermectin on Ascaris muscle. Br J Pharmacol 98:747–756

    PubMed  CAS  Google Scholar 

  • Martin RJ, Valkanov MA (1995) A chloride channel in isolated muscle vesicles from Ascaris suum conducts products of anaerobic metabolism, suggesting a role in excretion of organic-anions. J Physiol 482P:8

    Google Scholar 

  • Martin RJ, Pennington AJ, Duittoz AH, Robertson S, Kusel JR (1991) The physiology and pharmacology of neuromuscular-transmission in the nematode parasite Ascaris suum. Parasitology 102:S41–S58

    PubMed  Google Scholar 

  • Martin RJ, Thorn P, Gration KA, Harrow ID (1992) Voltage-activated currents in somatic muscle of the nematode parasite Ascaris suum. J Exp Biol 173:75–90

    PubMed  CAS  Google Scholar 

  • Martin RJ, Sitamze JM, Duittoz AH, Wermuth CG (1995) Novel arylaminopyridazine-GABA receptor antagonists examined electrophysiologically in Ascaris suum. Eur J Pharmacol 276:9–19

    Article  PubMed  CAS  Google Scholar 

  • Martin RJ, Valkanov MA, Dale MVE., Robertson AP, Murray I (1996) Electrophysiology of Ascaris muscle and anti-nematodal drug action. Parasitology 113:S137–S156

    PubMed  Google Scholar 

  • Maule AG, Geary TG, Bowman JW, Marks NJ, Blair KL, Halton DW, Shaw C, Thompson DP (1995) Inhibitory effects of nematode FMRFamide-related peptides (FaRPs) on muscle strips from Ascaris suum. Invert Neurosci 1:255–265

    Article  PubMed  CAS  Google Scholar 

  • Maule AG, Mousley A, Marks NJ, Day TA, Thompson DP, Geary TG, Halton DW (2002) Neuropeptide signaling systems - potential drug targets for parasite and pest control. Curr Top Med Chem 2:733–758

    Article  PubMed  CAS  Google Scholar 

  • Pennington AJ, Martin RJ (1990) A patch-clamp study of acetylcholine-activated ion channels in Ascaris suum muscle. J Exp Biol 154:201–21

    PubMed  CAS  Google Scholar 

  • Purcell J, Robertson AP, Thompson DP, Martin RJ (2002a) The time-course of the response to the FMRFamide-related peptide PF4 in Ascaris suum muscle cells indicates direct gating of a chloride ion-channel. Parasitology 124:649–656

    Article  PubMed  CAS  Google Scholar 

  • Purcell J, Robertson AP, Thompson DP, Martin RJ (2002b) PF4, a FMRFamide-related peptide, gates low-conductance Cl channels in Ascaris suum. Eur J Pharmacol 456:11–17

    Article  PubMed  CAS  Google Scholar 

  • Qian H, Martin RJ, Robertson AP (2006) Pharmacology of N-, L-, and B- subtypes of nematode nAChR resolved at the single-channel level in Ascaris suum. FASEB J 14:2606–2608

    Article  Google Scholar 

  • Richmond JE, Jorgensen EM (1999) One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat Neurosci 2:791–797

    Article  PubMed  CAS  Google Scholar 

  • Robertson SJ, Martin RJ (1993) Levamisole-activated single-channel currents from muscle of the nematode parasite Ascaris suum. Br J Pharmacol 108:170–8

    PubMed  CAS  Google Scholar 

  • Robertson AP, Marin RJ (1996) Effects of pH on the Ca-dependent chloride channel: a patch-clamp study in Ascaris suum. Parasitology 113:191–198

    Article  PubMed  CAS  Google Scholar 

  • Robertson SJ, Pennington AJ, Evans AM, Martin RJ (1994) The action of pyrantel as an agonist and an open channel blocker at acetylcholine receptors in isolated Ascaris suum muscle vesicles. Eur J Pharmacol 271:273–282

    Article  PubMed  CAS  Google Scholar 

  • Robertson AP, Bjorn HE, Martin RJ (1999) Resistance to levamisole resolved at the single-channel level. FASEB J 13:749–760

    PubMed  CAS  Google Scholar 

  • Robertson AP, Clark CL, Burns TA, Thompson DP, Geary TG, Trailovic SM, Martin RJ (2002) Paraherquamide and 2-deoxy-paraherquamide distinguish cholinergic receptor subtypes in Ascaris muscle. J Pharmacol Exp Ther 302:853–860

    Article  PubMed  CAS  Google Scholar 

  • Saz NJ (1981) Energy metabolisms of parasitic helminthes-adaptations to parasitism. Ann Rev Physiol 43:323–341

    Article  CAS  Google Scholar 

  • Saz NJ, Weil A (1962) A pathway of formation of alpha-methyl valerate by Ascaris lumbricoides. J Biol Chem 237:2053–2056

    PubMed  CAS  Google Scholar 

  • Shtonda B, Avery L (2005) CCA-1, EGL-19 and EXP-2 currents shape action potentials in the Caenorhabditis elegans pharynx. J Exp Biol 208:2177–2190

    Article  PubMed  CAS  Google Scholar 

  • Tielens AGM (1994) Energy generation in parasitic helminthes. Parasitol Today 10:346–352

    Article  PubMed  CAS  Google Scholar 

  • Tornøe C, Bai D, Holden-Dye L, Abramson SN, Sattelle DB (1995) Actions of neurotoxins (bungarotoxins, neosurugatoxin and lophotoxins) on insect and nematode nicotinic acetylcholine receptors. Toxicon 33:411–24

    Article  PubMed  Google Scholar 

  • Touroutine D, Fox RM, Von Stetina SE, Burdina A, Miller DM 3rd, Richmond JE (2005) acr-16 encodes an essential subunit of the levamisole-resistant nicotinic receptor at the Caenorhabditis elegans neuromuscular junction. J Biol Chem 280:27013–21

    Article  PubMed  CAS  Google Scholar 

  • Tsang VC, Saz HJ (1973) Demonstration and function of 2-methyl-butyrate racemase in Ascaris lumbricoides. Comp Biochem Physiol B 45B:617–623

    Article  Google Scholar 

  • Valkanov MA, Martin RJ (1995) A Cl channel selectively conducts dicarboxylic products from glucose metabolism and indicates a role in transmembrane transport of waste organic anions. J Membr Biol 147:41–49

    Google Scholar 

  • Valkanov MA, Martin RJ, Dixon DM (1994) The Ca-activated chloride channel of Ascaris suum conducts volatile fatty acids produced by anaerobic respiration- a patch-clamp study. J Membr Biol 138:133–141

    PubMed  CAS  Google Scholar 

  • Verma S, Robertson AP, Martin RJ (2007) The nematode neuropeptide, AF2 (KHEYLRF-NH2), increases voltage-activated calcium currents in Ascaris suum muscle. Br J Pharmacol 151:888–899

    Article  PubMed  CAS  Google Scholar 

  • Wolstenholme AJ, Rogers AT (2005) Glutamate-gated chloride channels and the mode of action of the avermectin/mylbemycin anthelmintics. Parasitology 131:S85–S95

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

APR and RJM are funded by an NIH RO1 grant (AI04719406A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan P. Robertson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robertson, A.P., Martin, R.J. Ion-channels on parasite muscle: pharmacology and physiology. Invert Neurosci 7, 209–217 (2007). https://doi.org/10.1007/s10158-007-0059-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-007-0059-x

Keywords

Navigation