Skip to main content
Log in

Effect of a recombinant manganese superoxide dismutase on prevention of contrast-induced acute kidney injury

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Contrast media (CM)-induced nephropathy (CIN) is an acute deterioration of renal function following administration of CM mediated to a large extent by the increased production of ROS within the kidney. Aim of this study was to evaluate whether a novel isoform of a recombinant Manganese SOD (rMnSOD) could provide an effective protection against CIN; this molecule shares the same ability of physiological SODs in scavenging reactive oxygen species (ROS) but, due to its peculiar properties, enters inside the cells after its administration.

Methods

We studied the effects rMnSOD on oxidative damage in a rat model of CIN in uninephrectomized rats, that were randomly assigned to 3 experimental Groups: Group CON, control rats treated with the vehicle of CM, Group HCM, rats treated with CM and Group SOD, rats treated with CM and rMnSOD.

Results

In normal rats, pretreatment with rMnSOD, reduced renal superoxide anion production, induced by the activation of NAPDH oxidase, by 84 % (p < 0.001). In rats of Group HCM, ROS production was almost doubled compared to rat of Group CON (p < 0.01) but returned to normal values in rats of Group SOD, where a significant increase of SOD activity was detected (+16 % vs HCM, p < 0.05). Administration of CM determined a striking fall of GFR in rats of Group HCM (−70 %, p < 0.001 vs CON), greatly blunted in Group SOD (−28 % vs CON, p < 0.01); this was associated with a lower presence of both tubular necrosis and intratubular casts in SOD-treated rats (both p < 0.01 vs Group HCM).

Conclusions

Our data indicate that rMnSOD is able to reduce renal oxidative stress, thus preventing the reduction of GFR and the renal histologic damage that follows CM administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

b.w.:

Body weight

CIN:

Contrast media-induced nephropathy

CM:

Contrast media

DCF:

Dichlorofluorescein

DCFH-DA:

2′,7′-Dichlorofluorescin diacetate

GFR:

Glomerular filtration rate

IF:

Intensity Fluorescence

i.p.:

Intraperitoneal

i.v.:

Intravenous

LSA:

Liposarcoma cell line

rMnSOD:

Recombinant manganese superoxide dismutase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

WST:

Water-soluble tetrazolium salt

References

  1. Rudnick MR, Cohen RM, Goldfarb S. Contrast media associated nephrotoxicity. Curr Opin Nephrol Hypertens. 1996;5:127–33.

    Article  CAS  PubMed  Google Scholar 

  2. Solomon R. Contrast-medium-induced acute renal failure. Kidney Int. 1998;53:230–42.

    Article  CAS  PubMed  Google Scholar 

  3. Waybill MM, Waybill PN. Contrast media-induced nephrotoxicity: identification of patients at risk and algorithms for prevention. J Vasc Interven Radiol. 2001;12:3–9.

    Article  CAS  Google Scholar 

  4. Heyman SN, Reichman J, Brezis M. Pathophysiology of radiocontrast nephropathy: a role for medullary hypoxia. Invest Radiol. 1999;34:685–91.

    Article  CAS  PubMed  Google Scholar 

  5. Bakris GL, Lass N, Gaber AO, et al. Radiocontrast medium-induced declines in renal function: a role for oxygen free radicals. Am J Physiol. 1990;258:115–20.

    Google Scholar 

  6. Fishbane S. N-acetylcysteine in the prevention of contrast induced nephropathy. Clin J Am Soc Nephrol. 2008;3:281–7.

    Article  CAS  PubMed  Google Scholar 

  7. Liu R, Nair D, Ix J, Moore DH, Bent S. N-acetylcysteine for the prevention of contrast-induced nephropathy. A systematic review and meta-analysis. J Gen Intern Med. 2005;20:193–200.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Merten GJ, Burgess WP, Gray LV, et al. Prevention of contrast induced nephropathy with sodium bicarbonate: a randomized controlled trial. JAMA. 2004;291:2328–34.

    Article  CAS  PubMed  Google Scholar 

  9. Wan XS, Devalaraja MN, St Clair DK. Molecular structure and organization of the human manganese superoxide dismutase gene. DNA Cell Biol. 1994;13:1127–36.

    Google Scholar 

  10. Wispe JR, Clark JC, Burhans MS, Kropp KE, Korfhagen TR, Whitsett JA. Synthesis and processing of the precursor for human manganosuperoxide dismutase. Biochim Biophys Acta. 1989;994:30–6.

    Article  CAS  PubMed  Google Scholar 

  11. Scott MD, Meshnick SR, Eaton JW. Superoxide dismutase amplifies organismal sensitivity to ionizing radiation. J Biol Chem. 1989;264:2498–501.

    CAS  PubMed  Google Scholar 

  12. Guyton KZ, Kensler TW. Oxidative mechanisms in carcinogenesis. Br Med Bull. 1993;49:523–44.

    CAS  PubMed  Google Scholar 

  13. Borrelli A, Schiattarella A, Mancini R, et al. A recombinant MnSOD is radioprotective for normal cells and radiosensitizing for tumor cells. Free Radic Biol Med. 2009;46:110–6.

    Article  CAS  PubMed  Google Scholar 

  14. Rahman NA, Mori K, Mizukami M, Suzuki T, Takahashi N, Ohyama C. Role of peroxynitrite and recombinant human manganese superoxide dismutase in reducing ischemia-reperfusion renal tissue injury. Transplant Proc. 2009;41:3603–10.

    Article  CAS  PubMed  Google Scholar 

  15. Maeva G, Rodriguez-Vilarrupla A, Gracia-Sancho J, Rosado E, Mancini A, Bosch J, Garcia-Pagán JC. Recombinant human manganese superoxide dismutase reduces liver fibrosis and portal pressure in CCl4-cirrhotic rat. J Hepatol. 2013; 58j:240–246.

    Google Scholar 

  16. Mancini A, Borrelli A, Schiattarella A, et al. Biophysical and biochemical characterization of a liposarcoma-derived recombinant MnSOD protein acting as an anticancer agent. Int J Cancer. 2008;123:2684–269.

    Google Scholar 

  17. Mancini A, Borrelli A, Schiattarella A, et al. Tumor suppressive activity of a variant isoform of manganese superoxide dismutase released by a human liposarcoma cell line. Int J Cancer. 2006;119:932–43.

    Article  CAS  PubMed  Google Scholar 

  18. Sabbatini M, Pisani A, Uccello F, et al. Arginase inhibition slows the progression of renal failure in rats with renal ablation. Am J Physiol Renal Physiol. 2003;284:F680–7.

    CAS  PubMed  Google Scholar 

  19. Anarat A, Duman N, Noyan A, et al. The role of endothelin in radiocontrast nephropathy. Int Urol Nephrol. 1997;29:609–13.

    Article  CAS  PubMed  Google Scholar 

  20. Toprak O, Cirit M, Tanrisev M, et al. Preventive effect of nebivolol on contrast-induced nephropathy in rats. Nephrol Dial Transplant. 2008;23:853–9.

    Article  CAS  PubMed  Google Scholar 

  21. Borrelli A, Schiattarella A, Mancini R, et al. The leader peptide of a human rec. MnSOD as molecular carrier which delivers high amounts of Cisplatin into tumor cells inducing a fast apoptosis in vitro. Int J Cancer. 2011;128:453–9.

    Article  CAS  PubMed  Google Scholar 

  22. Lebel CP, Ali SF, McKee M, Bondy SC. Organometal-induced increases in oxygen reactive species: the potential of 2′,7′-dichlorofluorescin diacetate as an index of neurotoxic damage. Toxicol Appl Pharmacol. 1990;104(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  23. Goldenberg I, Matetzky S. Nephropathy induced by contrast media: pathogenesis, risk factors and preventive strategies. CMAJ. 2005;172:1461–71.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Zager RA, Johnson AC, Hanson SY. Radiographic contrast media-induced tubular injury: evaluation of oxidant stress and plasma membrane integrity. Kidney Int. 2003;64(1):128–39.

    Article  CAS  PubMed  Google Scholar 

  25. Paller MS, Hoidal JR, Ferris TF. Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest. 1984;74(4):1156–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Sabbatini M, Sansone G, Uccello F, et al. Functional versus structural changes in the pathophysiology of acute ischemic renal failure in aging rats. Kidney Int. 1994;45(5):1355–61.

    Article  CAS  PubMed  Google Scholar 

  27. Pica A, Di Santi A, Basile F, et al. Anti-cancer, anti-necrotic and imaging tumor marker role of a novel form of Manganese Superoxide Dismutase and its leader peptide. Int J Biol Biomed Eng. 2010;4:53–60.

    Google Scholar 

  28. Deray G, Baumelou B, Martinez F, et al. Renal vasoconstriction after low and high osmolar contrast agents in ischemic and non ischemic canine kidney. Clin Nephrol. 1991;36:93–6.

    CAS  PubMed  Google Scholar 

  29. Briguori C, Airoldi F, D’Andrea D, et al. Renal insufficiency following contrast media administration trial (REMEDIAL): a randomized comparison of 3 preventive strategies. Circulation. 2007;115:1211–7.

    CAS  PubMed  Google Scholar 

  30. Schrier RW, Wang W, Poole B, et al. Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J Clin Invest. 2004;114:5–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

None of the authors have anything to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleonora Riccio.

About this article

Cite this article

Pisani, A., Sabbatini, M., Riccio, E. et al. Effect of a recombinant manganese superoxide dismutase on prevention of contrast-induced acute kidney injury. Clin Exp Nephrol 18, 424–431 (2014). https://doi.org/10.1007/s10157-013-0828-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-013-0828-2

Keywords

Navigation