Skip to main content
Log in

The effect of learning and search images on predator–prey interactions

  • Special Feature: Review
  • Rapid Adaptation
  • Published:
Population Ecology

Abstract

In dealing with the spatial and temporal variability of prey species, predators may be able to forage optimally if they have flexible and rapid behavioral plasticity rather than predetermined responses. For predators that learn to focus attention on the cryptic prey type most frequently encountered during recent searching (termed a “search image”), rare prey types may be overlooked because of a focus on more common prey. Search imaging reflects biased searching for one of a number of available prey types, and has been studied widely in birds and mammals. Here we discuss the significant implications of this phenomenon for insect predator–prey systems, particularly with respect to parasitic wasps searching for host species using learned olfactory cues. We (1) review studies about perceptual development through individual ontogeny, (2) define the term “search image” and discuss the cognitive mechanisms involved in search-image formation, (3) discuss the role of search images and frequency-dependent predation as a proximate mechanism in the maintenance of prey diversity, (4) examine data on host–parasitoid olfactory search imaging, and (5) conclude by identifying important research areas for future studies in the field of olfactory search images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrams PA (1999) The adaptive dynamics of consumer choice. Am Nat 153:83–97

    Article  Google Scholar 

  • Abrams PA, Matsuda H (2004) Consequences of behavioral dynamics for the population dynamics of predator–prey systems with switching. Popul Ecol 46:13–25

    Article  Google Scholar 

  • Alborn T, Turlings TCJ, Jones TH, Steinhagen G, Loughrin JH, Tumlinson JH (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949

    Article  CAS  Google Scholar 

  • Allen JA (1988) Frequency-dependent selection by predators. Phil Trans R Soc Lond B 319:485–503

    Article  CAS  Google Scholar 

  • Barron AB (2001) The life and death of Hopkins’ host-selection principle. J Insect Behav 14:725–737

    Article  Google Scholar 

  • Bernays EA (1998) The value of being a resource specialist: behavioral support for a neural hypothesis. Am Nat 151:451–464

    Article  CAS  PubMed  Google Scholar 

  • Bernays EA (2001) Neural limitations in phytophagous insects: implications for diet breadth and evolution of host affiliation. Annu Rev Entomol 46:703–727

    Article  CAS  PubMed  Google Scholar 

  • Bernays EA, Funk DJ (1999) Specialists make faster decisions than generalists: experiments with aphids. Proc R Soc Lond B 266:151–156

    Article  Google Scholar 

  • Bernays EA, Wcislo WT (1994) Sensory capabilities, information processing, and resource specialization. Q Rev Biol 69:187–204

    Article  Google Scholar 

  • Blackiston DJ, Casey ES, Weiss MR (2008) Retention of memory through metamorphosis: can a moth remember what it learned as a caterpillar? PLoS ONE 3:e736

    Article  Google Scholar 

  • Bolhuis JJ, Hogan JA (1999) The development of animal behavior. Blackwell, Oxford

    Google Scholar 

  • Bond AB, Kamil AC (1998) Apostatic selection by blue jays (Cyanocitta cristata) searching for virtual prey produces balanced polymorphism. Nature 395:584–596

    Article  Google Scholar 

  • Bond AB, Kamil AC (2002) Visual predators select for crypticity and polymorphism in virtual prey. Nature 415:609–613

    Article  CAS  PubMed  Google Scholar 

  • Bouwmeester HJ, Verstappen FWA, Posthumus MA, Dicke M (1999) Spider mite-induced (3S)-(E)-nerolidol synthase activity in cucumber and lima bean. The first dedicated step in acyclic C11-homoterpene biosynthesis. Plant Physiol 121:173–180

    Article  CAS  PubMed  Google Scholar 

  • Chittka L, Thomson JD (2005) Cognitive ecology of pollination: animal behaviour and floral evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Chittka L, Thomson JD, Waser NM (1999) Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86:361–377

    Article  CAS  Google Scholar 

  • Clarke BC (1962) Natural selection in mixed populations of two polymorphic snails. Heredity 17:319–345

    Article  Google Scholar 

  • Cook LM, Miller P (1976) Density-dependent selection on polymorphic prey—some data. Am Nat 111:594–598

    Article  Google Scholar 

  • Cooper JM (1984) Apostatic selection on prey that match the background. Biol J Linn Soc 23:221–228

    Article  Google Scholar 

  • Corbet SA (1985) Insect chemosensory responses: a chemical legacy hypothesis. Ecol Entomol 10:143–153

    Article  Google Scholar 

  • Davis JM, Stamps JA (2004) The effect of natal experience on habitat preferences. Trends Ecol Evol 19:411–416

    Article  PubMed  Google Scholar 

  • Dawkins MS (1971) Perceptual changes in chicks: another look at the “search image” concept. Anim Behav 19:566–574

    Article  Google Scholar 

  • De Boer JG, Posthumus MA, Dicke M (2004) Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite. J Chem Ecol 30:2215–2230

    Article  PubMed  Google Scholar 

  • De Jong R, Kaiser L (1991) Odor learning by Leptopilina boulardi, a specialist parasitoid (Hymenoptera: Eucoilidae). J Insect Behav 4:743–750

    Article  Google Scholar 

  • Desimone R (1998) Visual attention mediated by biased competition in extrastriate visual cortex. Phil Trans R Soc Lond B 353:1245–1255

    Article  CAS  Google Scholar 

  • Dicke M, Sabelis MW (1988) How plants obtain predatory mites as bodyguards. Neth J Zool 38:148–165

    Article  Google Scholar 

  • Dukas R (1998) Cognitive ecology. University of Chicago Press, Chicago

    Google Scholar 

  • Dukas R (2002) Behavioral and ecological consequences of limited attention. Phil Trans R Soc Lond B 357:1539–1547

    Article  Google Scholar 

  • Dukas R (2008) Evolutionary biology of insect learning. Annu Rev Entomol 53:145–160

    Article  CAS  PubMed  Google Scholar 

  • Dukas R, Kamil AC (2001) Limited attention: the constraint underlying search image. Behav Ecol 12:192–199

    Article  Google Scholar 

  • Farris SM, Roberts NS (2005) Coevolution of generalist feeding ecologies and gyrencephalic mushroom bodies in insects. Proc Natl Acad Sci USA 102:17394–17399

    Google Scholar 

  • Gandolfi M, Mattiacci L, Dorn S (2003) Preimaginal learning determines adult response to chemical stimuli in a parasitic wasp. Proc R Soc Lond B 270:2623–2629

    Article  Google Scholar 

  • Ghimire M, Phillips TW (2008) Effects of prior experience on host selection and host utilization by two populations of Anisopteromalus calandrae (Hymenoptera: Pteromalidae). Environ Entomol 37:1300–1306

    Article  PubMed  Google Scholar 

  • Gould JL (1984) Natural history of honey bee learning. In: Marler P, Terrace HS (eds) The biology of learning. Dahlem Konferenzen, Berlin, pp 149–180

    Google Scholar 

  • Heinze HJ, Mangun GR, Burchert W, Heinrichs H, Scholz M, Munte TF, Gos A, Scherg M, Johannes S, Hundeshagen H, Gazzaniga MS, Hillyard SA (1994) Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature 372:543–546

    Article  CAS  PubMed  Google Scholar 

  • Hughes RN, Croy MI (1993) An experimental analysis of frequency-dependent predation (switching) in the 15-spined stickleback, Spinachia spinachia. J Anim Ecol 62:341–352

    Article  Google Scholar 

  • Ishii Y, Shimada M (2008) Competitive exclusion between contest and scramble strategists in Callosobruchus seed-beetle modeling. Popul Ecol 50:197–205

    Article  Google Scholar 

  • Jackson RR, Li D (2004) One-encounter search-image formation by araneophagic spiders. Anim Cogn 7:247–254

    Article  PubMed  Google Scholar 

  • Jans N, Nylin S (1997) The role of female search behavior in determining host plant range in plant feeding insects: a test of the information processing hypothesis. Proc R Soc Lond B 264:701–707

    Article  Google Scholar 

  • Kaiser L, Perez-Maluf R, Sandoz JC, Pham-Delegue MH (2003) Dynamics of odour learning in Leptopilina boulardi, a hymenopterous parasitoid. Anim Behav 66:1077–1084

    Article  Google Scholar 

  • Kastner S, Ungerleider LG (2000) Mechanisms of visual attention in the human cortex. Annu Rev Neurosci 23:315–341

    Article  CAS  PubMed  Google Scholar 

  • Kono H, Reid PJ, Kamil AC (1998) The effect of background cuing on prey detection. Anim Behav 56:963–972

    Article  PubMed  Google Scholar 

  • Langley CM, Riley DA, Bond AB, Goel N (1996) Visual search for natural grains in pigeons (Columba livia): search images and selective attention. J Exp Psych Anim Behav Proc 22:139–151

    Article  CAS  Google Scholar 

  • Langley SA, Tilmon KJ, Cardinale BJ, Ives AR (2006) Learning by the parasitoid wasp, Aphidius ervi (Hymenoptera: Braconidae), alters individual fixed preferences for pea aphid color morphs. Oecologia 150:172–179

    Article  PubMed  Google Scholar 

  • Lewis WJ, Takasu K (1990) Use of learned odours by a parasitic wasp in accordance with host and food needs. Nature 348:635–636

    Article  Google Scholar 

  • Lill JT, Marquis RJ, Ricklefs RE (2002) Host plants influence parasitism of forest caterpillars. Nature 417:170–173

    Article  CAS  PubMed  Google Scholar 

  • Margulies C, Tully T, Dubnau J (2005) Deconstructing memory in Drosophila. Curr Biol 15:700–713

    Article  Google Scholar 

  • Menzel R (1985) Learning in honey bees in an ecological and behavioral context. In: Holldobler B, Lindauer M (eds) Experimental behavioral ecology and sociobiology. Sinauer Associates, Sunderland, pp 55–74

    Google Scholar 

  • Menzel R (2001) Searching for the memory trace in a mini-brain, the honeybee. Learn Mem 8:53–62

    Article  CAS  PubMed  Google Scholar 

  • Mery F, Kawecki TJ (2003) A fitness cost of learning ability in Drosophila melanogaster. Proc R Soc London B 270:2465–2469

    Article  Google Scholar 

  • Mery F, Kawecki TJ (2004) An operating cost of learning in Drosophila melanogaster. Anim Behav 68:589–598

    Article  Google Scholar 

  • Moran J, Desimone R (1985) Selective attention gates visual processing in the extrastriate cortex. Science 229:782–784

    Article  CAS  PubMed  Google Scholar 

  • Murdoch WW (1969) Switching in general predators: experiments on predator specificity and stability of prey populations. Ecol Monogr 39:335–353

    Article  Google Scholar 

  • Murdoch WW, Oaten A (1975) Predation and population stability. Adv Ecol Res 9:1–131

    Article  Google Scholar 

  • Nams VO (1997) Density-dependent predation by skunks using olfactory search images. Oecologia 110:440–448

    Article  Google Scholar 

  • Olendorf R, Rodd FH, Punzalan D, Houde AE, Hurt C, Reznick DN (2006) Frequency-dependent survival in natural guppy populations. Nature 441:633–636

    Article  CAS  PubMed  Google Scholar 

  • Onodera J, Matsuyama S, Suzuki T, Fujii K (2002) Host-recognizing kairomones for parasitic wasp, Anisopteromalus calandrae, from larvae of azuki bean weevil, Callosobruchus chinensis. J Chem Ecol 28:1209–1220

    Article  CAS  PubMed  Google Scholar 

  • Papaj DR, Prokopy RJ (1989) Ecological and evolutionary aspects of learning in phytophagous insects. Annu Rev Entomol 34:315–350

    Article  Google Scholar 

  • Pietrewicz AT, Kamil AC (1979) Search image formation in the blue jay, Cyanocitta cristata. Science 204:1332–1333

    Article  PubMed  Google Scholar 

  • Plaisted KC (1997) The effect of interstimulus interval on the discrimination of cryptic targets. J Exp Psych Anim Behav Proc 23:248–259

    Article  Google Scholar 

  • Punzalan D, Rodd FH, Hughes KA (2005) Perceptual processes and the maintenance of polymorphism through frequency-dependent predation. Evol Ecol 19:303–320

    Article  Google Scholar 

  • Raffa KF, Hobson KR, LaFontaine S, Aukema BH (2007) Can chemical communication be cryptic? Adaptations by herbivores to natural enemies exploiting prey semiochemistry. Oecologia 153:1009–1019

    Article  PubMed  Google Scholar 

  • Rausher MD (1978) Search image for leaf shape in a butterfly. Science 200:1071–1073

    Article  PubMed  Google Scholar 

  • Ricklefs R, O’Rourke K (1975) Aspect diversity in moths: a temperate–tropical comparison. Evolution 29:313–324

    Article  Google Scholar 

  • Rogers LJ (1990) Light input and the reversal of functional lateralization in the chicken brain. Behav Brain Res 38:211–221

    Article  CAS  PubMed  Google Scholar 

  • Roughgarden J, Feldman M (1974) Species packing and predation pressure. Ecology 56:489–492

    Article  Google Scholar 

  • Smid HM, Wang G, Bukovinszky T, Steidle JLM, Bleeker AMK, van Loon JJA, Vet LEM (2007) Species-specific acquisition and consolidation of long-term memory in parasitic wasps. Proc R Soc B 274:1539–1546

    Article  PubMed  Google Scholar 

  • Spitzer H, Desimone R, Moran J (1988) Increased attention enhances both behavioral and neuronal performance. Science 240:338–340

    Article  CAS  PubMed  Google Scholar 

  • Stamps JA, Davis JM (2006) Adaptive effects of natal experience on habitat selection by dispersers. Anim Behav 72:1279–1289

    Article  Google Scholar 

  • Steidle JLM, van Loon JJA (2003) Dietary specialization and infochemical use in carnivorous arthropods: testing a concept. Entomol Exp Appl 108:133–148

    Article  Google Scholar 

  • Stephens DW (1993) Learning and behavioural ecology: incomplete information and environmental predictability. In: Papaj DR, Lewis AC (eds) Insect learning: ecological and evolutionary perspectives. Chapman & Hall, New York, pp 195–218

    Google Scholar 

  • Stephens DW, Brown JS, Ydenberg RC (2007) Foraging: behavior and ecology. University of Chicago Press, Chicago

    Google Scholar 

  • Takabayashi J, Sabelis MW, Janssen A, Shiojiri K, van Wijk M (2006) Can plants betray the presence of multiple herbivore species to predators and parasitoids? The role of learning in phytochemical information networks. Ecol Res 21:3–8

    Article  Google Scholar 

  • Tinbergen L (1960) The natural control of insects in pinewoods. Factors influencing the intensity of predation by songbirds. Arch Neer Zool 13:265–343

    Google Scholar 

  • Turlings TCJ, Wackers FL, Vet LEM, Lewis WJ, Tumlinson JH (1993) Learning of host-finding cues by hymenopterous parasitoids. In: Papaj DR, Lewis AC (eds) Insect learning: ecological and evolutionary perspectives. Chapman & Hall, New York, pp 51–78

    Google Scholar 

  • van Nouhuys S, Kaartinen R (2008) A parasitoid wasp uses landmarks while monitoring potential resources. Proc R Soc B 275:377–385

    Article  PubMed  Google Scholar 

  • Verghese P (2001) Visual search and attention: a signal detection theory approach. Neuron 31:523–535

    Article  CAS  PubMed  Google Scholar 

  • Vet LM (1999) From chemical to population ecology: infochemical use in an evolutionary context. J Chem Ecol 25:31–49

    Article  CAS  Google Scholar 

  • Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172

    Article  Google Scholar 

  • Vet LEM, Lewis WJ, Carde RT (1995) Parasitoid foraging and learning. In: Carde RT, Bell WJ (eds) Chemical ecology of insects. Chapman & Hall, London, pp 65–104

    Google Scholar 

  • Volkl W, Sullivan DJ (2000) Foraging behavior; host plant and host location in the aphid hyperparasitoid Euneura augarus. Entomol Exp Appl 97:47–56

    Article  Google Scholar 

  • Wallman J (1979) A minimal visual restriction experiment: preventing chicks from seeing their feet affects later responses to mealworms. Dev Psychobiol 12:391–397

    Article  CAS  PubMed  Google Scholar 

  • Weiss MR (1997) Innate colour preferences and flexible colour learning in the pipevine swallowtail. Anim Behav 53:1043–1052

    Article  Google Scholar 

  • White JA, Andow DA (2007) Foraging for intermittently refuged prey: theory and field observations of a parasitoid. J Anim Ecol 76:1244–1254

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumiko Ishii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishii, Y., Shimada, M. The effect of learning and search images on predator–prey interactions. Popul Ecol 52, 27–35 (2010). https://doi.org/10.1007/s10144-009-0185-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-009-0185-x

Keywords

Navigation