Skip to main content
Log in

Dispersal patterns of endemic alpine butterflies with contrasting population structures: Erebia epiphron and E. sudetica

  • Original Article
  • Published:
Population Ecology

Abstract

We studied population sizes and mobility of Erebia epiphron and Erebia sudetica, two high mountain butterflies forming endemic subspecies in the Hrubý Jeseník Mountains, Czech Republic. E. epiphron formed two continuous populations containing ≈100,000 and ≈4,500 individuals on alpine grasslands. The butterflies moved freely within their habitats, but movements between the two populations were highly unlikely. E. sudetica formed a system of colonies at timberline sites on valley headwalls and in forest clearings. Two such colonies studied in detail contained ≈4,500 and ≈450 adults and were interconnected by limited dispersal. The negative exponential function and the sigmoid function (this assumes flat decrease of movements over short distances) were superior to the inverse power function in fitting mobility data for both species. For E. sudetica, the functions describing movements within a habitat differed significantly from total movements, suggesting different behaviours of dispersing individuals. The habitats of E. epiphron are uniform and highly isolated, favouring free within-habitat mobility but prohibiting leaving their boundaries. The habitats of E. sudetica are diverse and disturbance-dependent; leaving such habitats is less risky, and a source-sink model may explain the persistence of the species in the mountains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4a–c.

Similar content being viewed by others

References

  • Baguette M (2003) Long distance dispersal and landscape occupancy in a metapopulation of the cranberry fritillary butterfly. Ecography 26:153–150

    Google Scholar 

  • Baguette M, Petit S, Queva F (2000) Population spatial structure and migration of three butterfly species within the same habitat network: consequences for conservation. J Appl Ecol 37:100–108

    Article  Google Scholar 

  • Brommer JE, Fred MS (1999) Movement of the apollo butterfly Parnassius apollo related to host plant and nectar plant patches. Ecol Entomol 24:125–131

    Article  Google Scholar 

  • Brussard PF, Ehrlich PR (1970) The population structure of Erebia epipsodea (Lepidoptera: Satyridae). Ecology 51:119–129

    Google Scholar 

  • Bullock JM, Clarke RT (2000) Long distance seed dispersal by wind: measuring and modelling the tail of the curve. Oecologia 124:506–521

    Google Scholar 

  • Cizek O, Bakesova A, Kuras T, Benes J, Konvicka M (2003) Vacant niche in alpine habitat: the case of an introduced population of the butterfly Erebia epiphron in the Krkonoše Mountains. Acta Oecol 24:15–23

    Article  Google Scholar 

  • Conradt L, Bodsworth EJ, Roper TJ, Thomas CD (2000) Non-random dispersal in the butterfly Maniola jurtina: implications for metapopulation models. Proc R Soc Lond B 267:1505–1510

    Article  CAS  PubMed  Google Scholar 

  • Cupedo F (1997) Die morphologische Gliederung des Erebia melampus-Komplexes, nebst Beschreibung zweier neuer Unerarten: Erebia melampus semisudetica ssp. n. und Erebia sudetica belledonnae ssp. n. (Lepidoptera, Satyridae). Nota Lepid 18:95–125

    Google Scholar 

  • Gutierrez D, Thomas CD, Leon-Cortes JL (1999) Dispersal, distribution, patch network and metapopulation dynamics of the dingy skipper butterfly (Erynnis tages). Oecologia 121:506–517

    Article  Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, New York

  • Hanski I, Thomas CD (1994) Metapopulation dynamics and conservation—a spatially explicit model applied to butterflies. Biol Conserv 68:167–180

    Google Scholar 

  • Harrison S (1991) Local extinction in a metapopulation context—an empirical evaluation. Biol J Linn Soc 42:73–88

    Google Scholar 

  • Heinz SK, Conradt L, Wissel C, Frank K (2003) Movement behavior and fragmented landscapes: a close formula for the reachabilities of patches. Am Nat (in press)

    Google Scholar 

  • Hill JK, Thomas CD, Lewis OT (1996) Effects of habitat patch size and isolation on dispersal by Hesperia comma butterflies: implications for metapopulation structure. J Anim Ecol 65:725–735

    Google Scholar 

  • Hill JK, Thomas CD, Fox R, Telfer MG, Willis SG, Asher J, Huntley B (2002) Responses of butterflies to twentieth century climate warming: implications for future ranges. Proc R Soc Lond B 269:2163–2171

    Article  CAS  PubMed  Google Scholar 

  • Hjermann DO, Ims RA (1996) Landscape ecology of the wart-biter Decticus verrucivorus in a patchy landscape. J Anim Ecol 65:768–780

    Google Scholar 

  • Inoue T (1978) A new regression method for analysing animal movement patterns. Res Popul Ecol 20:141–163

    Google Scholar 

  • Jeník J (1998) Biodiversity of the Hercynian mountains of Central Europe. Pirineos 151–152:93–99

    Google Scholar 

  • Jolly GM (1965) Explicit estimates from capture-recapture data with both death and immigration—stochastic model. Biometrica 52:225–247

    CAS  Google Scholar 

  • Konvicka M, Benes J, Kuras T (2002) Behaviour and microdistribution of two sympatric alpine butterflies (Erebia epiphron and E. euryale): relation to weather, vegetation and time of day. Biologia 57:225–235

    Google Scholar 

  • Kudrna O (2002) The distribution atlas of European butterflies. Oedippus 20:1–343

    Google Scholar 

  • Kuras T, Benes J, Konvicka M (2000) Differing habitat affinities of four Erebia species (Lepidoptera: Nymphalidae, Satyrinae) in the Hrubý Jeseník Mts, Czech Republic. Biologia 55:163–169

    Google Scholar 

  • Kuras T, Benes J, Konvicka M (2001a) Behaviour and within-habitat distribution of adult Erebia sudetica sudetica, endemic of the Hrubý Jeseník Mts., Czech Republic (Nymphalidae, Satyrinae). Nota Lepid 24:69–83

    Google Scholar 

  • Kuras T, Konvicka M, Benes J (2001b) Different frequencies of partial albinism in populations of alpine butterflies of different size and connectivity (Erebia: Nymphalidae, Satyrinae). Biologia 56:503–512

    Google Scholar 

  • Kuras T, Konvicka M, Benes J, Cizek O (2001c) Erebia sudetica and Erebia epiphron (Lepidoptera: Nymphalidae, Satyrinae) in the Czech Republic: review of present and past distribution, conservation implications. Čas Slez Muz Opava (A) 50:57–81

    Google Scholar 

  • Kuussaari M, Saccheri I, Camara M, Hanski I (1998) Allele effect and population dynamics in the Glanville fritillary butterfly. Oikos 82:384–392

    Google Scholar 

  • Matsumoto K (1985) Population dynamics of the Japanese clouded apollo Parnassius glacialis Butler (Lepidoptera: Papilionidae). I. Changes in population size and related population parameters for three successive generations. Res Popul Ecol 27:301–312

    Google Scholar 

  • Menendez R, Thomas CD (2000) Metapopulation structure depends on spatial scale in the host-specific moth Wheeleria spilodactylus (Lepidoptera: Pterophoridae). J Anim Ecol 69:935–951

    Article  Google Scholar 

  • Neve G, Mousson L, Baguette M (1996) Adult dispersal and genetic structure of butterfly populations in a fragmented landscape. Acta Oecol 17:621–626

    Google Scholar 

  • Petit S, Moilanen A, Hanski I, Baguette M (2001) Metapopulation dynamics of the bog fritillary butterfly: movements between habitat patches. Oikos 92:491–500

    Google Scholar 

  • Pollock KH, Nichols JD, Brownie C, Hines JE (1990) Statistical inference for capture-recapture experiments. Wildl Monogr 107:1–97

    Google Scholar 

  • Ravenscroft NOM, Warren MS (1996) The mountain ringlet Erebia epiphron: species action plan. Butterfly Conservation, Wareham, UK

    Google Scholar 

  • Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99

    Article  Google Scholar 

  • Roland J, Keyghobadi N, Fownes S (2000) Alpine Parnassius butterfly dispersal: effects of landscape and population size. Ecology 81:1642–1653

    Google Scholar 

  • Roslin T (2000) Dung beetle movements at two spatial scales. Oikos 91:323–335

    Google Scholar 

  • Schneider C (2003) The influence of spatial scale on quantifying insect dispersal: an analysis of butterfly data. Ecol Entomol 28:252–256

    Google Scholar 

  • Southwood TRE (1966) Ecological methods. Methuen, London

  • S-Plus 2000 (1999). Guide to statistics, vol 1. MathSoft, Seattle, Wash.

  • Sutcliffe OL, Thomas CD, Peggie D (1997) Area-dependent migration by ringlet butterflies generates a mixture of patchy population and metapopulation attributes. Oecologia 109:229–234

    Article  Google Scholar 

  • Sutherland GD, Harestad AS, Price K, Lertzman KP (2000) Scaling of natal dispersal distances in terrestrial birds and mammals. Conserv Ecol 4:16. http://www.consecol.org/vol4/iss1/art16

  • Thomas CD, Kunin WE (1999) Spatial structure of populations. J Anim Ecol 68:647–658

    Article  Google Scholar 

  • Thomas CD, Thomas JA, Warren MS (1992) Distributions of occupied and vacant butterfly habitats in fragmented landscapes. Oecologia 92:563–567

    Google Scholar 

  • Van Swaay CAM, Warren MS (1999) Red Data Book of European butterflies (Rhopalocera). Nature and environment, no. 99. Council of Europe Publishing, Strasbourg

  • Wahlberg N, Moilanen A, Hanski I (1996) Predicting the occurrence of endangered species in fragmented landscapes. Science 273:1536–1538

    Google Scholar 

  • Wahlberg N, Klemetti T, Selonen V, Hanski I (2002) Metapopulation structure and movements in five species of checkerspot butterflies. Oecologia 130:33–43

    Google Scholar 

  • Warren BC (1936) Monograph of the genus Erebia. Adlard, London

  • Wickman PO (1992) Sexual selection and butterfly design—a comparative study. Evolution 46:1525–1536

    Google Scholar 

  • Zar JH (1996) Biostatistical analysis, 3rd edn. Prentice Hall, London

  • Zollner PA, Lima SL (1997) Landscape-level perceptual abilities in white-footed mice: perceptual range and the detection of forested habitat. Oikos 80:51–60

    Google Scholar 

Download references

Acknowledgements

We thank the administration of the Hrubý Jeseník Landscape Protected Area, especially P. Balaz and V. Kavalcova, for logistic and moral support and permission to work in the nature reserve. J.E. Benes, A. Faltynkova, M. Harastova, M. Horak, K. Chytilova, M. Kaminska, T. Koudela, I. Kurasova and J. Pizskiewicz helped us in the field, L. Berec, O. Cizek, V. Jarosik, P. Kepka, P. Kindlmann, M. Maradova and V. Novotny contributed valuable suggestions to earlier versions on the manuscript. Simone Heinz and Karin Frank kindly sent us their paper containing the SIF function. Two anonymous referees and K. Yamamura commented on previous versions of the manuscript, which much improved its quality. The fieldwork was funded by Palacky University grants No. 32503003/1997, 32103008/1998 and 32503008/1999.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Konvicka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuras, T., Benes, J., Fric, Z. et al. Dispersal patterns of endemic alpine butterflies with contrasting population structures: Erebia epiphron and E. sudetica . Popul Ecol 45, 115–123 (2003). https://doi.org/10.1007/s10144-003-0144-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-003-0144-x

Keywords

Navigation