Skip to main content
Log in

New quantitative trait loci that regulate wound healing in an intercross progeny from DBA/1J and 129×1/SvJ inbred strains of mice

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Wound healing/regeneration mouse models are few, and studies performed have mainly utilized crosses between MRL/MPJ (a good healer) and SJL/J (a poor healer) or MRL/lpr (a good healer) and C57BL/6J (a poor healer). Wound healing is a complex trait with many genes involved in the expression of the phenotype. Based on data from previous studies that common and additional quantitative trait loci (QTL) were identified using different crosses of inbred strains of mice for various complex traits, we hypothesized that a new cross would identify common and additional QTL, unique modes of inheritance, and interacting loci, which are responsible for variation in susceptibility to fast wound healing. In this study, we crossed DBA/1J (DBA, a good healer) and 129/SvJ (129, a poor healer) and performed a genome-wide scan using 492 (DBA×129) F2 mice and 98 markers to identify QTL that regulate wound healing/regeneration. Four QTL on chromosomes 1, 4, 12, and 18 were identified which contributed toward wound healing in F2 mice and accounted for 17.1% of the phenotypic variation in ear punch healing. Surprisingly, locus interactions contributed to 55.7% of the phenotype variation in ear punch healing. In conclusion, we have identified novel QTL and shown that minor interacting loci contribute significantly to wound healing in DBA×129 mice cross.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beamer WG, Shultz KL, Churchill GA, Frankel WN, Baylink DJ, Rosen CJ, Donahue LR (1999) Quantitative trait loci for bone density in C57BL/6J and CAST/EiJ inbred mice. Mamm Genome 10:1043–1049

    Article  PubMed  CAS  Google Scholar 

  • Beamer WG, Shultz KL, Donahue LR, Churchill GA, Sen S, Wergedal JR, Frankel WN, Baylink DJ, Rosen CJ (2001) Quantitative trait loci for femoral and lumbar vertebral bone mineral density in C57BL/6J and C3H/HeJ inbred strains of mice. J Bone Miner Res 16:1195–1206

    Article  PubMed  CAS  Google Scholar 

  • Benes H, Weinstein RS, Zheng W, Thaden JJ, Jilka RL, Manolagas SC, Reis RJS (2000) Chromosomal mapping of osteopenia-associated quantitative trait loci using closely related mouse strains. J Bone Miner Res 15:626–633

    Article  PubMed  CAS  Google Scholar 

  • Blankenhorn EP, Troutman S, Clark LD, Zhang X-M, Chen P, Heber-Katz E (2003) Sexually dimorphic genes regulate healing and regeneration in MRL mice. Mamm Genome 14:250–260

    Article  PubMed  Google Scholar 

  • Clark LD, Clark RK, Heber-Katz E (1998) A new murine model for mammalian wound repair and regeneration. Clin Immunol Immunopathol 88:35–45

    Article  PubMed  CAS  Google Scholar 

  • Down M, Power M, Smith SI, Ralston K, Spanevello M, Burns GF, Boyd AW (2005) Cloning and expression of the large zebrafish protocadherin gene, Fat. Gene Expr Patterns 5:483–490

    PubMed  CAS  Google Scholar 

  • Drake TA, Schadt E, Hannani K, Kabo JM, Krass K, Colinayo V, Greaser LE, Golden J, Lusis AJ (2001) Genetic loci determining bone density in mice with diet-induced atherosclerosis. Physiol Genomics 5:205–215

    PubMed  CAS  Google Scholar 

  • Frankel W (1995) Taking stock of complex trait genetics in mice. Trends Genet 11(12):471–477

    Article  PubMed  CAS  Google Scholar 

  • Goldshmit Y, Galea MP, Wise G, Bartlett PF, Turnley AM (2004) Axonal regeneration and lack of astrocytic gliosis in EphA4-deficient mice. J Neurosci 24:10064–10073

    Article  PubMed  CAS  Google Scholar 

  • Heber-Katz E, Leferovich JM, Bedelbaeva K, Gourevitch D (2004) Spallanzani's mouse: a model of restoration and regeneration. Curr Top Microbiol Immunol 280:165–189

    PubMed  CAS  Google Scholar 

  • Himanen JP, Nikolov DB (2003) Eph signaling: a structural view. Trends Neurosci 26:46–51

    Article  PubMed  CAS  Google Scholar 

  • Klein RF, Mitchell SR, Phillips TJ, Belknap, JK, Orwoll ES (1998) Quantitative trait loci affecting peak bone mineral density in mice. J Bone Miner Res 13:1657–1659

    Article  PubMed  Google Scholar 

  • Koller DJ, Econs MJ, Morin PA, Christian JC, Hui SL, Parry P, Curran ME, Rodriguez LA, Conneally PM, Joslyn G, Peacock M, Johnston CC, Foroud T (2000) Genome screen for QTL contributing to normal variation in bone mineral density and osteoporosis. J Clin Endocrinol Metab 85:3116–3120

    Article  PubMed  CAS  Google Scholar 

  • Li X, Gu W, Masinde G, Hamilton-Ulland M, Xu S, Mohan S, Baylink DJ (2001a) Genetic control of the rate of wound healing in mice. Heredity 86:668–674

    Article  PubMed  CAS  Google Scholar 

  • Li X, Gu W, Masinde G, Hamilton-Ulland M, Xu S, Mohan S, Baylink DJ (2001b) Genetic control of the rate of wound healing in mice. J Heredity 86:1–7

    Article  Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1993) Mapping genes controlling quantitative traits using MAPMAKER/QTL Version 1.1. A tutorial and reference manual. Whitehead Institute for Biomedical Research Technical Report

  • Lynch SE, Colvin BB, Antoniades HN (1991) Growth factors in wound healing. Single and synergistic effectiveness of partial thickness porcine skin wounds. J Clin Invest 84:640–646

    Article  Google Scholar 

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross platform software for genetic mapping. Mamm Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  • Martin P (1997) Wound healing—aiming for perfect skin regeneration. Science 276:75–81

    Article  PubMed  CAS  Google Scholar 

  • Masinde GL, Li X, Gu W, Davidson H, Mohan S, Baylink DJ (2001) Identification of wound healing/regeneration quantitative trait loci (QTL) at multiple time points that explain seventy percent of variance in (MRL/MpJ and SJL/J) mice F2 population. Genome Res 11:2027–2033

    Article  PubMed  CAS  Google Scholar 

  • Masinde G, Li X, Gu W, Wergedal J, Mohan S, Baylink DJ (2002) Quantitative trait loci for bone density in mice: the genes determining total skeletal density and femur density show little overlap in same F2 mice. Calcif Tissue Int 71:421–428

    Article  PubMed  CAS  Google Scholar 

  • Matsuyoshi N, Imamura S (1997) Multiple cadherins are expressed in human fibroblasts. Biochem Biophys Res Commun 235:355–358

    Article  PubMed  CAS  Google Scholar 

  • McBrearty BA, Clark LD, Zhang XM, Blankenhorn EP, Heber-Katz E (1998) Genetic analysis of a mammalian wound-healing trait. Proc Natl Acad Sci U S A 95:11792–11797

    Article  PubMed  CAS  Google Scholar 

  • Medina A, Swain RK, Kuerner KM, Steinbeisser H (2004) Xenopus paraxial protocadherin has signaling functions and is involved in tissue separation. EMBO J 23:3249–3258

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg GA (2002) Matrix metalloproteinases in neuroinflammation. Glia 39:279–291

    Article  PubMed  Google Scholar 

  • Shimizu M, Higuchi K, Bennett B, Xia C, Tsuboyama T, Kasai S, Chiba T, Fujisawa H et al (1999) Identification of peak bone mass QTL in a spontaneously osteoporotic mouse strain. Mamm Genome 10:81–87

    Article  PubMed  CAS  Google Scholar 

  • Singer AJ, Clark RAF (1999) Cutaneous wound healing. N Engl J Med 341:738–746

    Article  PubMed  CAS  Google Scholar 

  • Stocum DL (1996) Tissue restoration: approaches and prospects. Wound Repair Regen 4:3–15

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW (1999) LOD significance thresholds for QTL analysis in experimental populations of diploid species. Heredity 83:613–624

    Article  PubMed  Google Scholar 

  • Van Ooijen JW, Maliepaard C (1996) MapQTLs (tm) version 4.0: software for the calculation of QTLS positions on the genetic maps. CPRO-DLO, Wageningen, The Netherlands

    Google Scholar 

Download references

Acknowledgements

Assistance award #DAMDBA7-99-1-9571 supported this work. The US Army Medical Research Acquisition Activity, 820 Chandler Street, Fort Detrick, MD 21702-5014, USA, is the awarding and administering acquisition office. The information contained in this publication does not necessarily reflect the position or policy of the Government, and no official endorsement should be inferred. The authors wish to thank Heather Davidson and Melanie Hamilton-Ulland for their excellent technical support and the JL Pettis VA Medical Center for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subburaman Mohan.

Additional information

The authors Masinde, Li, and Nguyen contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masinde, G.L., Li, R., Nguyen, B. et al. New quantitative trait loci that regulate wound healing in an intercross progeny from DBA/1J and 129×1/SvJ inbred strains of mice. Funct Integr Genomics 6, 157–163 (2006). https://doi.org/10.1007/s10142-005-0004-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-005-0004-1

Keywords

Navigation