Skip to main content

Advertisement

Log in

Bayesian networks and agent-based modeling approach for urban land-use and population density change: a BNAS model

  • Original Article
  • Published:
Journal of Geographical Systems Aims and scope Submit manuscript

Abstract

Land-use change models grounded in complexity theory such as agent-based models (ABMs) are increasingly being used to examine evolving urban systems. The objective of this study is to develop a spatial model that simulates land-use change under the influence of human land-use choice behavior. This is achieved by integrating the key physical and social drivers of land-use change using Bayesian networks (BNs) coupled with agent-based modeling. The BNAS model, integrated Bayesian network–based agent system, presented in this study uses geographic information systems, ABMs, BNs, and influence diagram principles to model population change on an irregular spatial structure. The model is parameterized with historical data and then used to simulate 20 years of future population and land-use change for the City of Surrey, British Columbia, Canada. The simulation results identify feasible new urban areas for development around the main transportation corridors. The obtained new development areas and the projected population trajectories with the“what-if” scenario capabilities can provide insights into urban planners for better and more informed land-use policy or decision-making processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • An L, Linderman M, Qi J, Shortridge A, Liu J (2005) Exploring complexity in a human-environment system: an agent-based spatial model for multidisciplinary and multiscale integration. Ann Assoc Am Geogr 95(1):54–79

    Article  Google Scholar 

  • Batty M (2005) Agents, cells, and cities: new representational models for simulating multiscale urban dynamics. Environ Plan A 37(8):1373–1394

    Article  Google Scholar 

  • Benenson I (2004) Agent-based modeling: From individual residential choice to urban residential dynamics. In: Goodchild MF, Janelle DG (eds) Spatially Integrated Social Science. Oxford University Press, New York, pp 67–95

    Google Scholar 

  • Benenson I, Omer I, Hatna E (2002) Entity-based modeling of urban residential dynamics: the case of Yaffo, Tel Aviv. Environ Plan B 29(4):491–512

    Article  Google Scholar 

  • Bennett DA, Tang W, Wang S (2011) Toward an understanding of provenance in complex land use dynamics. J Land Use Sci 6(2–3):211–230

    Article  Google Scholar 

  • Bromley J, Jackson NA, Clymer OJ, Giacomello AM, Jensen FV (2005) The use of Hugin® to develop Bayesian Networks as an aid to integrated water resource planning. Environ Modell Softw 20(2):231–242

    Article  Google Scholar 

  • Brown DG, Xie Y (2006) Spatial agent-based modeling. Int J Geogr Inf Sci 20(9):941–943

    Article  Google Scholar 

  • Brown DG, Page SE, Riolo R, Rand W (2004) Agent-based and analytical modeling to evaluate the effectiveness of greenbelts. Environ Modell Softw 19(12):1097–1109

    Article  Google Scholar 

  • Brown DG, Page S, Riolo R, Zellner M, Rand W (2005a) Path dependence and the validation of agent-based spatial models of land use. Int J Geogr Inf Sci 19(2):153–174

    Article  Google Scholar 

  • Brown DG, Riolo R, Robinson DT, North M, Rand W (2005b) Spatial process and data models: toward integration of agent-based models and GIS. J Geogr Syst 7(1):25–47

    Article  Google Scholar 

  • Cheng J, Greiner R, Kelly J, Bell D, Liu WR (2002) Learning Bayesian networks from data: an information-theory based approach. Artif Intell 137(1–2):43–90

    Article  Google Scholar 

  • Collins RJ, Jefferson DR (1992) AntFarm: Towards simulated evolution. In: Langton CG (ed) Artificial life II : Proceedings of the Workshop on Artificial Life. Addison-Wesley, Redwood City, CA, pp 579–601

    Google Scholar 

  • Cooper GF, Herskovits E (1992) A Bayesian Method for the Induction of Probabilistic Networks from Data. Mach Learn 9(4):309–347

    Google Scholar 

  • de Almeida MC, Monteiro AMV, Soares GCBS, Cerqueira GC, Pennachin CL, Batty M (2005) GIS and remote sensing as tools for the simulation of urban land-use change. Int J Remote Sens 26(4):759–774

    Google Scholar 

  • Dorling D (1993) Map design for census mapping. Cartogr J 30(2):167–183

    Article  Google Scholar 

  • ESRI (2012) GIS and Mapping software. http://www.esri.com. Accessed 20 May 2012

  • Evans TP, Sun W, Kelley H (2006) Spatially explicit experiments for the exploration of land-use decision-making dynamics. Int J Geogr Inf Sci 20(9):1013–1037

    Article  Google Scholar 

  • Ferber J (1998) Multi-agent systems: An introduction to distributed artificial intelligence. Addison-Wesley, Harlow

    Google Scholar 

  • Gigerenzer G, Selten R (2001) Bounded rationality the adaptive toolbox. MIT Press, Cambridge, Mass, MIT cognet

    Google Scholar 

  • Gilbert N, Terna P (2000) How to build and use agent-based models in social science. Mind Soc 1(1):57–72

    Article  Google Scholar 

  • Graniero PA, Robinson VB (2006) A probe mechanism to couple spatially explicit agents and landscape models in an integrated modeling framework. Int J Geogr Inf Sci 20(9):965–990

    Article  Google Scholar 

  • Heckerman D, Wellman MP (1995) Bayesian Networks. Commun ACM 38(3):27–30

    Article  Google Scholar 

  • Howard RA, Matheson JE (1984) Influence diagrams. In: Howard RA, Matheson JE (eds) Readings on the Principles and Applications of Decision Analysis, vol II., Strategic Decisions GroupMenlo Park, Calif, pp 719–762

    Google Scholar 

  • Janssens D, Wets G, Brijs T, Vanhoof K, Arentze T, Timmermans H (2006) Integrating Bayesian networks and decision trees in a sequential rule-based transportation model. Eur J Oper Res 175(1):16–34

    Article  Google Scholar 

  • Jensen FV (2001) Bayesian networks and decision graphs. Statistics for engineering and information science. Springer, New York

    Google Scholar 

  • Kocabas V, Dragicevic S (2006) Coupling Bayesian Networks with GIS-based cellular automata for modeling land use change. Lect Notes Comput Sci 4197:217–233

    Article  Google Scholar 

  • Kocabas V, Dragicevic S (2007) Enhancing a GIS cellular automata model of land use change: bayesian networks, influence diagrams and causality. Trans GIS 11(5):679–700

    Article  Google Scholar 

  • Kocabas V, Dragicevic S (2009) Agent-based model validation using Bayesian Networks and vector spatial data. Environ Plan B 36(5):787–801

    Article  Google Scholar 

  • Kocabas V, Dragicevic S (2012) Integration of a GIS-Bayesian Network agent-based model in a planning support system as framework for policy generation. URISA J 24(1):35–52

    Google Scholar 

  • Lauritzen S, Spiegelhalter D (1988) Local computations with probabilities on graphical structures and their applications to expert systems. J Roy Stat Soc 50(2):157–224

    Google Scholar 

  • Lei Z, Pijanowski BC, Alexandridis KT, Olson J (2005) Distributed modeling architecture of a multi-agent-based behavioral economic landscape (MABEL) model. Simul-T Soc Mod Sim 81(7):503–515

    Google Scholar 

  • LeSage JP, Pace RK (2004) Arc_Mat, a toolbox for using ArcView shape files for spatial econometrics and statistics. Lect Notes Comput Sci 3234:179–190

    Article  Google Scholar 

  • Ligmann-Zielinska A, Jankowski P (2007) Agent-based models as laboratories for spatially explicit planning policies. Environ Plan B 34(2):316–335

    Article  Google Scholar 

  • Ligmann-Zielinska A, Sun L (2010) Applying time dependent variance-based global sensitivity analysis to represent the dynamics of an agent-based model of land use change. Int J Geogr Inf Sci 24(12):1829–1850

    Article  Google Scholar 

  • Ligtenberg A, Bregt AK, van Lammeren R (2001) Multi-actor-based land use modelling: spatial planning using agents. Landsc Urban Plan 56(1–2):21–33

    Article  Google Scholar 

  • Liu X, LeSage J (2009) Arc_mat: a Matlab-based spatial data analysis toolbox. J Geogr Syst 12(1):69–87

    Article  Google Scholar 

  • Loibl W, Toetzer T (2003) Modeling growth and densification processes in suburban regions–simulation of landscape transition with spatial agents. Environ Modell Softw 18(6):553–563

    Article  Google Scholar 

  • Ma L, Arentze T, Borgers A, Timmermans H (2004) Using Bayesian decision networks for knowledge representation under conditions of uncertainty in multi-agent land use simulation models. In: Leeuwen J, Timmermans HJP (eds) Recent Advances in Design and Decision Support Systems in Architecture and Urban Planning. Kluwer, Dordrecht; Boston, pp 129–144

    Google Scholar 

  • Ma L, Arentze T, Borgers A, Timmermans H (2007) Modelling land-use decisions under conditions of uncertainty. Comput Environ Urban 31(4):461–476

    Article  Google Scholar 

  • Maes P (1994) Modeling adaptive autonomous agents. Artif Life 1:135–162

    Article  Google Scholar 

  • Manson SM (2006) Bounded rationality in agent-based models: experiments with evolutionary programs. Int J Geogr Inf Sci 20(9):991–1012

    Article  Google Scholar 

  • Mas JF, Puig H, Palacio JL, Sosa-Lopez A (2004) Modelling deforestation using GIS and artificial neural networks. Environ Modell Softw 19(5):461–471

    Article  Google Scholar 

  • Mathworks (2012) Getting started with Matlab. http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/getstart.pdf. Accessed 20 May 2012

  • MetroVancouver (2012a) Greater Vancouver regional district. http://www.metrovancouver.org/Pages/default.aspx. Accessed May 20 2012

  • MetroVancouver (2012b) Metro 2040 residential growth projections. http://www.metrovancouver.org/planning/development/strategy/RGSBackgroundersNew/RGSMetro2040ResidentialGrowth.pdf. Accessed 20 May 2012

  • Miller EJ, Douglas Hunt J, Abraham JE, Salvini PA (2004) Microsimulating urban systems. Comput Environ Urban 28(1–2):9–44

    Article  Google Scholar 

  • Murphy K (2001) The Bayes net toolbox for Matlab. In: Wegman EJ, Braverman A, Goodman A, Smyth P (eds) Computing science and statistics vol 33, 33rd Symposium on the interface, Costa Mesa, CA, 2001. Interface Foundation of North America, pp 331–350

  • Neapolitan RE (2003) Learning Bayesian Networks. Prentice Hall, Harlow

    Google Scholar 

  • Parker DC, Berger T, Manson SM (2001) Agent-based models of land-use and land-cover change: Report and review of an international workshop. http://www.indiana.edu/~act/focus1/ABM_Report6.pdf. Accessed 20 May 2012

  • Parker DC, Manson SM, Janssen MA, Hoffmann MJ, Deadman P (2003) Multi-agent systems for the simulation of land-use and land-cover change: a review. Ann Assoc Am Geogr 93(2):314–337

    Article  Google Scholar 

  • Pearl J (1988) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers, San Mateo, CA, Morgan Kaufmann series in representation and reasoning

    Google Scholar 

  • Robinson DT, Brown DG (2009) Evaluating the effects of land-use development policies on ex-urban forest cover: an integrated agent-based GIS approach. Int J Geogr Inf Sci 23(9):1211–1232

    Article  Google Scholar 

  • Robinson D, Brown DG, Parker DC, Schreinemachers P, Janssen MA, Huigen M, Wittmer H, Gotts N, Promburom P, Irwin E, Berger T, Gatzweiler F, Barnaud C (2007) Comparison of Empirical Methods for Building Agent-Based Models in Land Use Science. J Land Use Sci 2(1):31–55

    Article  Google Scholar 

  • Rodrigues A, Grueau C, Raper J, Neves N (1998) Environmental planning using spatial agents. In: Carver S (ed) Innovations in GIS 5. Taylor & Francis, London, UK, pp 108–118

    Google Scholar 

  • Smajgl A, Brown DG, Valbuena D, Huigen MGA (2011) Empirical characterisation of agent behaviours in socio-ecological systems. Environ Modell Softw 26(7):837–844

    Article  Google Scholar 

  • Statistics-Canada (2012) Canada’s national statistical agency. http://www.statcan.ca. Accessed 20 May 2012

  • Tobler WR (1984) Application of image processing techniques to map processing. In: Proceedings of the International Symposium on Spatial Data Handling, Zurich, IGU, pp 140–144

  • Torrens PM (2006) Simulating sprawl. Ann Assoc Am Geogr 96(2):248–275

    Article  Google Scholar 

  • Torrens PM, Benenson I (2005) Geographic automata systems. Int J Geogr Inf Sci 19(4):385–412

    Article  Google Scholar 

  • Torrens PM, Nara A (2007) Modeling gentrification dynamics: a hybrid approach. Comput Environ Urban 31(3):337–361

    Article  Google Scholar 

  • Uusitalo L (2007) Advantages and challenges of Bayesian networks in environmental modelling. Ecol Model 203(3–4):312–318

    Article  Google Scholar 

  • Waddell P (2002) UrbanSim—Modeling urban development for land use, transportation, and environmental planning. J Am Plan Assoc 68(3):297–314

    Article  Google Scholar 

  • Wright JK (1936) A method of mapping densities of population: with Cape Cos as an example. Geogr Rev 26(1):103–110

    Article  Google Scholar 

  • Wu S, Wang L, Qiu X (2008) Incorporating GIS building data and census housing statistics for sub-block-level population estimation. Prof Geogr 60(1):121–135

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Natural Sciences and Engineering Research Council (NSERC) and Social Sciences and Humanities Research Council (SSHRC) of Canada for financial support of this study. The Metro Vancouver and the Greater Vancouver Transportation Authority (Translink) provided some of the spatial data. The MATLAB software was made available by the Network Support Group, Faculty of Applied Sciences and Centre for Systems Science at Simon Fraser University. The authors are thankful to the journal Editor and the two anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzana Dragicevic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kocabas, V., Dragicevic, S. Bayesian networks and agent-based modeling approach for urban land-use and population density change: a BNAS model. J Geogr Syst 15, 403–426 (2013). https://doi.org/10.1007/s10109-012-0171-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10109-012-0171-2

Keywords

JEL Classification

Navigation