Skip to main content
Log in

A primal-proximal heuristic applied to the French Unit-commitment problem

  • Published:
Mathematical Programming Submit manuscript

Abstract

This paper is devoted to the numerical resolution of unit-commitment problems, with emphasis on the French model optimizing the daily production of electricity. The solution process has two phases. First a Lagrangian relaxation solves the dual to find a lower bound; it also gives a primal relaxed solution. We then propose to use the latter in the second phase, for a heuristic resolution based on a primal proximal algorithm. This second step comes as an alternative to an earlier approach, based on augmented Lagrangian (i.e. a dual proximal algorithm). We illustrate the method with some real-life numerical results. A companion paper is devoted to a theoretical study of the heuristic in the second phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anstreicher, K., Wolsey, L.A.: On dual solutions in subgradient optimization. Unpublished manuscript, CORE, Louvain-la-Neuve, Belgium, 1993

  2. Arrow, K.J., Hurwicz, L.: Reduction of constrained maxima to saddle point problems. In: Neyman, J. (ed.) Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, 1956, pp. 1–26

  3. Baldick, J.: The generalized unit commitment problem. IEEE Transactions on Power Systems 10 (1), 465–475 (1995)

    Article  Google Scholar 

  4. Batut, J., Renaud, A.: Daily generation scheduling with transmission constraints: a new class of algorithms. IEEE Transactions on Power Systems 7 (3), 982–989 (1992)

    Article  Google Scholar 

  5. Bellman, R., Kalaba, R., Lockett, J.: Numerical Inversion of the Laplace Transform. Elsevier, 1966

  6. Bertsekas, D.P.: Convexification procedures and decomposition methods for nonconvex optimization problems. Journal of Optimization Theory and Applications 29, 169–197 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, 1995

  8. Bertsekas, D.P., Lauer, G.S., Sandell, N.R., Posberg, T.A.: Optimal short-term scheduling of large-scale power systems. IEEE Transactions on Automatic Control AC-28, 1–11 (1983)

    Google Scholar 

  9. Bonnans, J.F., Gilbert, J.Ch., Lemaréchal, C., Sagastizábal, C.: Numerical Optimization. Springer Verlag, 2003

  10. Cheney, E., Goldstein, A.: Newton’s method for convex programming and Tchebycheff approximations. Numer. Math. 1, 253–268 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  11. CIGRE SC 38. Task Force 38-04-01. Unit commitment, final report, 1997

  12. Cohen, G.: Auxiliary problem principle and decomposition of optimization problems. J. Optim. Theory Appl. 32, 277–305 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  13. Daniilidis, A., Lemaréchal, C.: On a primal-proximal heuristic in discrete optimization. To appear in Mathematical Programming. Also available as: Inria Research Report 4550, http://www.inria.fr/rrrt/rr-4550.html.

  14. Falk, J.E.: Lagrange multipliers and nonconvex programs. SIAM J. Cont. 7 (4), 534–545 (1969)

    Article  MathSciNet  Google Scholar 

  15. Feltenmark, S., Kiwiel, K.C.: Dual applications of proximal bundle methods, including Lagrangian relaxation of nonconvex problems. SIAM J. Optim. 10 (3), 697–721 (2000)

    Article  MathSciNet  Google Scholar 

  16. Feltenmark, S., Kiwiel, K.C., Lindberg, P.O.: Solving unit commitment problems in power production planning. In: U. Zimmermann (ed.) Operations Research Proceedings 1996, 236–241 (1997)

    MathSciNet  Google Scholar 

  17. Geoffrion, A.M.: Primal resource-directive approaches for optimizing nonlinear decomposable systems. Operations Research 18 (3), 375–403 (1970)

    Article  MathSciNet  Google Scholar 

  18. Gollmer, R., Nowak, M.P., Römisch, W., Schultz, R.: Unit commitment in power generation – a basic model and some extensions. Annals of Operations Research 96, 167–189 (2000)

    Article  MATH  Google Scholar 

  19. Gonzalez, R., Bongrain, M.P., Renaud, A.: Unit commitment handling transmission constraints with an interior point method. In Proceedings of the 13th PSCC conference, Trondheim, 2, 715–723 (1999)

  20. Gröwe-Kuska, N., Römisch, W.: Stochastic unit commitment in hydro-thermal power production planning. In: S.W. Wallace, W.T. Ziemba (eds.), Applications of Stochastic Programming, Series in Optimization. SIAM Publications, MPS–SIAM, 2004

  21. Guignard, M., Kim, S.: Lagrangean decomposition: a model yielding stronger Lagrangean bounds. Mathematical Programming 39 (2), 215–228 (1987)

    MathSciNet  Google Scholar 

  22. Guignard, M., Kim, S.: Lagrangean decomposition for integer programming: theory and applications. RAIRO Recherche Opérationnelle 21 (4), 307–323 (1987)

    MathSciNet  Google Scholar 

  23. Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Springer Verlag, Heidelberg, 1993. Two volumes

  25. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Springer Verlag, Heidelberg, 1993. Two volumes

  26. Kelley, J.E.: The cutting plane method for solving convex programs. J. Soc. Indust. Appl. Math. 8, 703–712 (1960)

    Article  MathSciNet  Google Scholar 

  27. Kiwiel, K.C.: A dual method for certain positive semidefinite quadratic programming problems. SIAM Journal on Scientific and Statistical Computing 10 (1), 175–186 (1989)

    Article  MathSciNet  Google Scholar 

  28. Kiwiel, K.C.: A Cholesky dual method for proximal piecewise linear programming. Numer. Math. 68, 325–340 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  29. Larsson, T., Patriksson, M., Strömberg, A.B.: Ergodic, primal convergence in dual subgradient schemes for convex programming. Mathematical Programming 86 (2), 283–312 (1999)

    Article  MathSciNet  Google Scholar 

  30. Lemaréchal, C.: Lagrangian relaxation. In: M. Jünger, D. Naddef (eds.), Computational Combinatorial Optimization, Springer Verlag, Heidelberg, 2001, pp. 115–160

  31. Lemaréchal, C.: The omnipresence of Lagrange. 4OR, 1 (1), 7–25 (2003)

  32. Lemaréchal, C., Pellegrino, F., Renaud, A., Sagastizábal, C.: Bundle methods applied to the unit-commitment problem. In: J. Dolezal, J. Fidler (eds.), System Modelling and Optimization, Chapman and Hall, 1996, pp. 395–402

  33. Lemaréchal, C., Renaud, A.: A geometric study of duality gaps, with applications. Mathematical Programming 90 (3), 399–427 (2001)

    Google Scholar 

  34. Lemaréchal, C., Sagastizábal, C.: Variable metric bundle methods: from conceptual to implementable forms. Mathematical Programming 76 (3), 393–410 (1997)

    Article  Google Scholar 

  35. Madrigal, M., Quintana, V.H.: An interior-point/cutting-plane method to solve unit commitment problems. IEEE Transactions on Power Systems 15 (3), 1022–1027 (2000)

    Article  Google Scholar 

  36. Magnanti, T.L., Shapiro, J.F., Wagner, M.H.: Generalized linear programming solves the dual. Management Science 22 (11), 1195–1203 (1976)

    Article  Google Scholar 

  37. Pellegrino, F., Renaud, A., Socroun, T.: Bundle method and augmented Lagrangian methods for short-term unit commitment. In Proceedings of the 12th PSCC Conference, Dresden 2, 730–739 (1996)

  38. Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: R. Fletcher (ed.), Optimization. Academic Press, London, New York, 1969

  39. Renaud, A.: Daily generation management at Electricité de France: from planning towards real time. IEEE Transactions on Automatic Control 38 (7), 1080–1093 (1993)

    Article  MathSciNet  Google Scholar 

  40. Rockafellar, R.T.: The multiplier method of Hestenes and Powell applied to convex programming. J. Optim. Theory Appl. 6, 555–562 (1973)

    Article  MathSciNet  Google Scholar 

  41. Rockafellar, R.T.: Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM J. Cont. 12, 268–285 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  42. Sheblé, G.B., Fahd, G.N.: Unit commitment literature synopsis. IEEE Transactions on Power Systems 9, 128–135 (1994)

    Article  Google Scholar 

  43. Shor, N.Z.: Minimization methods for non-differentiable functions. Springer Verlag, Berlin, 1985

  44. Takriti, S., Birge, J.R.: Using integer programming to refine lagrangian-based unit commitment solutions. IEEE Transactions on Power Systems 15 (1), 151–156 (2000)

    Article  Google Scholar 

  45. Terlaky, T. (ed.): Interior Point Methods of Mathematical Programming. Kluwer Academic Press, Dordrecht, 1996

  46. Uzawa, H.: Iterative methods for concave programming. In: K. Arrow, L. Hurwicz, H. Uzawa (eds.), Studies in Linear and Nonlinear Programming. Stanford University Press 1959, pp 154–165

  47. Vanderbeck, F.: A generic view at the Dantzig-Wolfe decomposition approach in mixed integer programming: paving the way for a generic code. Working paper U0222, University of Bordeaux, Talence, France, 2002

  48. Zhuang, F., Galiana, F.D.: Towards a more rigorous and practical unit commitment by lagrangian relaxation. IEEE Transactions on Power Systems 3 (2), 763–773 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Lemaréchal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubost, L., Gonzalez, R. & Lemaréchal, C. A primal-proximal heuristic applied to the French Unit-commitment problem. Math. Program. 104, 129–151 (2005). https://doi.org/10.1007/s10107-005-0593-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-005-0593-4

Keywords

Mathematics Subject Classification (2000):

Navigation