Skip to main content

Advertisement

Log in

A scientific paradigm for targeted nanophotothermolysis; the potential for nanosurgery of cancer

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The application of gold nanoparticles (AuNPs) in nanophotothermolysis as a great photosensitizer is expanding, and this subject is a challenging area for cancer therapy. Recent technological advances in nanoscale manufacturing and synthesis promise the development of highly beneficial and innovative methods for the targeting of cancer. However, there is an obstacle to conducting effective laser-based nanosurgery because AuNPs are activated by visible or near infrared wavelengths, and the penetration of a laser beam inside the body is limited by some absorbents, such as melanin, water, and blood molecules. Considering everything stated above, we have suggested the application of a folate-conjugated AuNP as an effective agent for targeted nanophotothermolysis and the application of an optical fiber to transport the laser light from the source to the target tissue inside the body. Thus, a new method of nanosurgery in which a surgeon is able to perform surgery at the cellular or even at the subcellular level may be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Colombelli J et al (2005) Subcellular nanosurgery with a pulsed subnanosecond UV-A laser. Med Laser Appl 20:217–222

    Article  Google Scholar 

  2. Huang X et al (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217–228

    Article  PubMed  Google Scholar 

  3. Zharov VP, Galitovskaya EN, Johnson C, Kelly T (2005) Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy. Lasers Surg Med 37:219–226

    Article  PubMed  Google Scholar 

  4. Niemz M. (2004) Laser–tissue interactions: fundamentals and applications. Springer, Berlin

  5. Sultan R (1990) Tumour ablation by laser in general surgery. Lasers Med Sci 5:185–193

    Article  Google Scholar 

  6. Mansoori GA, Mohazzabi P, McCormack P (2007) Nanotechnology in cancer prevention, detection and treatment: bright future lies ahead. WRSTSD 4:226–257

    Article  Google Scholar 

  7. Mansoori GA. (2005) Principles of nanotechnology: molecular based study of condensed matter in small systems. World Sci Pub Co, Hackensack

  8. Mansoori GA, George TF, Assoufid L, Zhang G. (2007) Molecular building blocks for nanotechnology: from diamondoids to nanoscale materials and applications. Springer, Berlin

  9. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264

    Article  CAS  PubMed  Google Scholar 

  10. Anderson LJE, Hansen E, Lukianova-Hleb EY, Hafner JH, Lapotko DO (2010) Optically guided controlled release from liposomes with tunable plasmonic nanobubbles. J Control Release 144:151–158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Freitas Jr RA. (1999) Nanomedicine, Vol. I: Basic capabilities. Georgetown (TX): Landes Bioscience; Also available from: http://www.nanomedicine.com/NMI.htm.

  12. Freitas Jr Robert A (2000) Nanodentistry. J Am Dent Assoc 131:1559–1566

    Article  Google Scholar 

  13. Freitas Jr RA. (2005) Current status of nanomedicine and medical nanorobotics [invited survey]. J Comput Theor Nanosci; 2:1–25

    Google Scholar 

  14. Freitas Jr RA. (2005) What is nanomedicine? Nanomed Nanotechnol Biol Med; 1:2–9

    Google Scholar 

  15. Borges AR, Schengrund CL (2005) Dendrimers and antivirals: a review. Curr Drug Targets Infect Disord 5:247–254

    Article  CAS  Google Scholar 

  16. Mashino T, Shimotohno K, Ikegami N, Nishikawa D, Okuda K, Takahashi K et al (2005) Human immunodeficiency virus-reverse transcriptase inhibition and hepatitis C virus RNA-dependent RNA polymerase inhibition activities of fullerene derivatives. Bioorg Med Chem Lett 15:1107–1109

    Article  CAS  PubMed  Google Scholar 

  17. O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photothermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171–176

    Article  PubMed  Google Scholar 

  18. Freitas Jr Robert A (2005) Nanotechnology, nanomedicine and nanosurgery. Int J Surg 3:243–246

    Article  Google Scholar 

  19. Huttmann G, Yao C, Endl E (2005) New concepts in laser medicine: towards a laser surgery with cellular precision. Medical Laser Application 20:135–139

    Article  Google Scholar 

  20. Benno Radt. (2002) Inaktivierungvon Proteinen und Zellen durch Laserbestrahlungvon Mikropartikeln. Ph.D. thesis, University Lu¨ beck,

  21. Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP (2003) Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 84:4023–4032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lapotko DO, Zharov VP (2005) Spectral evaluation of laser-induced cell damage with photothermal microscopy. Lasers SurgMed 36:22–30

    Article  Google Scholar 

  23. Tirlapur UK, König K (2002) Femtosecond near-infrared laser pulses as a versatile non-invasive tool for intra-tissue nanoprocessing in plants without compromising viability. Plant J 31:365–374

    Article  PubMed  Google Scholar 

  24. Shakeri-Zadeh A, Ghasemifard M, Ali Mansoori G (2010) Structural and optical characterization of folate-conjugated gold-nanoparticles. Physica E 42:1272–1280

    Article  Google Scholar 

  25. Shakeri-Zadeh A, Eshghi H, Mansoori GA, AR H (2009) Gold nanoparticles conjugated with folic acid using mercaptohexanol. J Nanotech Prog Intl 1:13–29

    Google Scholar 

  26. Hashemian AR, Eshghi H, Shakeri-Zadeh A, Mansoori G (2010) Folate-conjugated gold nanoparticles (synthesis, characterization and design for cancer cells nanotechnology-based targeting). Intl J Nanosci Nanotech 5:25–33

    Google Scholar 

  27. Shakeri-Zadeh A, Mansoori G, Hashemian A, Eshghi H, Sazgarnia A, Montazerabadi A (2010) Cancerous cells targeting and destruction using folate conjugated gold nanoparticles. Dynamic Biochem Proc Biotech Mol Biol 4:6–12

    Google Scholar 

  28. Shakeri-Zadeh A, GA M. Cancer Nanotechnology treatment through folate conjugated gold nanoparticles. Proceedings of WCC 2010 (The 2nd World Congress on Cancer), India 2010

  29. Mansoori GA, Brandenburg KS, Shakeri-Zadeh A (2010) A comparative study of two folate-conjugated gold nanoparticles for cancer nanotechnology applications. Cancers 2:1911–1928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. El-Sayed I, Huang X, El-Sayed M (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239:129–135

    Article  CAS  PubMed  Google Scholar 

  31. Huff T, Tong L, Zhao Y, Hansen M, Cheng J, Wei A (2007) Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2:125–132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Hirsch L, Stafford R, Bankson J et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100:13549–13554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Berns MW, Greulich KO (2007) Laser Manipulation of Cells and Tissues: Methods in Cell Biology. Elsevier Academic Press, USA

  34. Matsuura Y, Shi Y, Abe Y et al (2001) Infrared-laser delivery system based on polymer-coated hollow fibers. Optics Laser Technol 33:279–283

    Article  CAS  Google Scholar 

  35. Mones E, Moretti F, Fasoli M et al (2006) Feasibility study for the use of Ca3+ − doped optical fibres in radiotherapy. Nucl Inst Meth Phys Res 562:449–455

    Article  CAS  Google Scholar 

  36. Abakumov AO, Aleinikov VS, Artjushenko VG et al (1986) Coagulation and destruction of biological tissue by CO laser irradiation using fibre-optic cable. Optics Laser Technol 18:190–192

    Article  Google Scholar 

  37. Takahara H, Koshijima T, Iida H (1986) Fundamental studies on laser radiation therapy: dispersion of a laser beam passing through optical fibres. Optics Laser Technol 18:85–88

    Article  CAS  Google Scholar 

  38. http://bronchoscopy.com/ available on 18 Sept 2012.

  39. Koufman JA, Rees CJ, Frazier WD et al (2007) Office-based laryngeal laser surgery: a review of 443 cases using three wavelengths. Otolaryngol Head Neck Surg 137:146–151

    Article  PubMed  Google Scholar 

  40. Krespi YP, Khosh MM, Blitzer A (1994) Transnasal endoscopic laser surgery for the treatment of benign nasopharyngeal lesions. Oper Tech Otolaryngol Head Neck Surg 5:267–270

    Article  Google Scholar 

  41. Vereczkey A, Kabdebo O, Szeberényi Z et al (2005) Lasers in the surgical management of endometriosis. Rev Gynaecol Practice 5:23–31

    Article  Google Scholar 

  42. Mouadeb DA, Belafsky PC (2007) In-office laryngeal surgery with the 585 nm pulsed dye laser (PDL). Otolaryngol Head Neck Surg 137:477–481

    Article  PubMed  Google Scholar 

  43. Ilgner J, Westhofen M (2010) Laser interventions in otorhinolaryngology—current techniques and future developments. Med Laser App 25:27–33

    Article  Google Scholar 

  44. Shapiro J, Zeitels S, Fried M (1992) Laser surgery for laryngeal cancer. Otolaryngol Head Neck Surg 3:84–92

    Google Scholar 

  45. Li JL, Wang L, Liu XY et al (2009) In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Lett 274:319–326

    Article  CAS  PubMed  Google Scholar 

  46. Lu W, Xiong C, Zhang G et al (2009) Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog–conjugated hollow gold nanospheres. Clin Cancer Res 15:876–886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Li JL, Day D, Gu M (2008) Ultra low energy threshold for cancer photothermal therapy using transferrin conjugated gold nanorods. Adv Mater 20:3866–3871

    Article  CAS  Google Scholar 

  48. Jain P, Lee K, El-Sayed I, El-Sayed M (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    Article  CAS  PubMed  Google Scholar 

  49. Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 7:1929–1934

    Article  CAS  PubMed  Google Scholar 

  50. Stern JM, Stanfield J, Kabbani W, Hsieh JT, Cadeddu JA (2008) Selective prostate cancer thermal ablation with laser activated gold nanoshells. J Urol 179:748–753

    Article  PubMed  Google Scholar 

  51. Neukam F, Stelzle F (2010) Laser tumor treatment in oral and maxillofacial surgery. Phys Proc 5:91–100

    Article  CAS  Google Scholar 

  52. Hui R, O'Sullivan M (2009) Fiber optic measurement techniques, 1st edn. Elsevier Academic Press, USA

  53. Adam C, Mues JM, Knudsen BE (2009) Evaluation of 24 holmium:YAG laser optical fibers for flexible ureteroscopy. J Urol 182:348–354

    Article  Google Scholar 

  54. Verdaasdonk RM, van Swol CF (1997) Laser light delivery systems for medical applications. Phys Med Biol 42:869–894

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the ENT-Head and Neck Research Center at Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), for supporting our project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seyed Kamran Kamrava or Amirhossein Ahmadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakeri-Zadeh, A., Kamrava, S.K., Farhadi, M. et al. A scientific paradigm for targeted nanophotothermolysis; the potential for nanosurgery of cancer. Lasers Med Sci 29, 847–853 (2014). https://doi.org/10.1007/s10103-013-1399-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-013-1399-x

Keywords

Navigation