Skip to main content

Advertisement

Log in

Combinations of cefoxitin plus other β-lactams are synergistic in vitro against community associated methicillin-resistant Staphylococcus aureus

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

In vitro studies demonstrate that oxacillin minimal inhibitory concentrations (MICs) of methicillin-resistant S. aureus (MRSA) strains USA300 and 400 decrease in the presence of cefoxitin. The aim of this study was to characterize the activity of cefoxitin plus β-lactams against a collection of MRSA isolates. We assessed the in vitro antimicrobial activity of a selection of β-lactams alone and together with subinhibitory concentrations of cefoxitin against a collection of MRSA, methicillin-susceptible S. aureus (MSSA), and vancomycin-intermediate S. aureus (VISA) isolates using MICs and time kill assays. For community-associated (CA) MRSA strains USA300 and USA400, MICs of nafcillin, cefazolin, cephalexin, cefuroxime, ceftriaxone and cefotaxime decreased by 8- to 64-times in the presence of 10 μg/ml cefoxitin. In contrast, for hospital-associated (HA) strains COLn, N315, and Mu50, there was no change in any β-lactam MIC in the presence of cefoxitin. When combined with cefoxitin, the cephalexin MIC decreased for eight CA-MRSA and five MSSA sequence types but did not change for seven HA-MRSA sequence types. β-lactam/cefoxitin combinations were synergistic against CA- but not HA-MRSA strains in time kill assays. Cefoxitin combined with a variety of β-lactams enhances their activity against CA-MRSA strains in vitro. Further studies of combination β-lactam therapy may provide insight into β-lactam biology, penicillin binding protein cooperativity, and novel therapeutic strategies against MRSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harrison LH, Lynfield R, Dumyati G, Townes JM, Craig AS, Zell ER, Fosheim GE, McDougal LK, Carey RB, Fridkin SK (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298:1763–1771

    Article  PubMed  CAS  Google Scholar 

  2. Purcell K, Fergie J (2005) Epidemic of community-acquired methicillin-resistant Staphylococcus aureus infections. Arch Pediatr Adolesc Med 159:980–985

    Article  PubMed  Google Scholar 

  3. Moran GJ, Krishnadasan A, Gorwitz RJ, Fosheim EE, McDougal LK, Carey RB, Talan DA (2006) Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J Med 355:666–674

    Article  PubMed  CAS  Google Scholar 

  4. DeLeo FR, Chambers HR (2009) Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J Clin Invest 119:2464–2474

    Article  PubMed  CAS  Google Scholar 

  5. Hersh AL, Chambers HF, Maselli JH, Gonzales R (2008) National trends in ambulatory visits and antibiotic prescribing for skin and soft-tissue infections. Arch Inter Med 168:1585–1591

    Article  Google Scholar 

  6. Naseri I, Jerris RC, Sobol SE (2009) Nationwide trends in pediatric Staphylococus aureus head and neck infections. Arch Otolaryngol Head Neck Surg 135:14–16

    Article  PubMed  Google Scholar 

  7. Dombrowski J, Winston LG (2008) Clinical failures of appropriately-treated methicillin-resistant Staphylococcus aureus infections. J Infect 57:110–115

    Article  PubMed  Google Scholar 

  8. Hawkins C (2007) Persistent Staphylococcus aureus bacteremia: an analysis of risk factors and outcomes. Arch Int Med 167:1861–1867

    Article  Google Scholar 

  9. Howe RA, Monk A, Wootton M, Walsh TR (2004) Vancomycin susceptibility within methicillin-resistant Staphylococcus aureus lineages. Emerg Infect Dis 10:855–857

    Article  PubMed  CAS  Google Scholar 

  10. Sakoulas G Jr, Moellering RC Jr (2008) Increasing antibiotic resistance among methicillin-resistant Staphylococcus aureus strains. Clin Infect Dis 46:S360–S367

    Article  PubMed  CAS  Google Scholar 

  11. Sakoulas G, Moise-Broder PA, Schentag J, Forrest A Jr, Moellering RC Jr, Eliopoulos GM (2004) Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. J Clin Microbiol 42:2398–2402

    Article  PubMed  CAS  Google Scholar 

  12. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48:1–-12

    Article  PubMed  Google Scholar 

  13. Deresinski S (2009) Vancomycin heteroresistance and methicillin-resistant Staphylococcus aureus. J Infect Dis 199:605–609

    Article  PubMed  Google Scholar 

  14. Hayden MK, Rezai K, Hayes RA, Lolans K, Quinn JP, Weinstein RA (2005) Development of daptomycin resistance in vivo in methicillin-resistant Staphylococcus aureus. J Clin Microbiol 43:5285–5287

    Article  PubMed  CAS  Google Scholar 

  15. Hiramatsu K, Aritaka N, Hanaki H, Kawasaki S, Hosoda Y, Hori S, Fukuchi Y, Kobayashi I (1997) Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 350:1670–1673

    Article  PubMed  CAS  Google Scholar 

  16. Antignac A, Tomasz A (2009) Reconstruction of the phenotypes of methicillin-resistant Staphylococcus aureus by replacement of the Staphylococcal cassette chromosome mec with a plasmid-borne copy of Staphylococcus sciuri pbpD gene. Antimicro Agents Chemother 53:435–441

    Article  CAS  Google Scholar 

  17. Katayama Y, Ito T, Hiramatsu K (2000) A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 44:1549–1555

    Article  PubMed  CAS  Google Scholar 

  18. Wu S, Piscitelli C, Lencastre HD, Tomasz A (1996) Tracking the evolutionary origin of the methicillin resistance gene: cloning and sequencing of a homologue of mecA from a methicillin susceptible strain of Staphylococcus sciuri. Microb Drug Resist 2:435–441

    Article  PubMed  CAS  Google Scholar 

  19. Zhou Y, Antignac A, Wu SW, Tomasz A (2008) Penicillin-binding proteins and cell wall composition in b-lactam sensitive and -resistant strains of Staphylococcus sciuri. J Bacteriol 190:508–514

    Article  PubMed  CAS  Google Scholar 

  20. Kozarich JW, Strominger JL (1978) A membrane enzyme from Staphylococcus aureus which catalyzes transpeptidase, carboxypeptidase, and penicillinase activities. J Biol Chem 25:1272–1278

    Google Scholar 

  21. Wyke AW, Ward JB, Hayes MV, Curtis NAC (1981) A role in vivo for penicillin-binding protein 4 of Staphylococcus aureus. Eur J Biochem 119:389–393

    Article  PubMed  CAS  Google Scholar 

  22. Navratna V, Nadig S, Sood V, Prasad K, Arakere G, Gopal B (2010) Molecular basis for the role of Staphylococcus aureus penicillin binding protein 4 in antimicrobial resistance. J Bact 192:134–144

    Article  PubMed  CAS  Google Scholar 

  23. Katayama Y, Zhang HZ, Hong D, Chambers HF (2003) Jumping the barrier to b-lactam resistance in Staphylococcus aureus. J Bacteriol 185:5465–5472

    Article  PubMed  CAS  Google Scholar 

  24. Memmi G, Filipe SR, Pinho MG, Fu Z, Cheung A (2008) Staphylococcus aureus PBP4 is essential for beta-lactam resistance in community-acquired methicillin-resistant strains. Antimicro Agents Chemother 52:3955–3966

    Article  CAS  Google Scholar 

  25. Chambers HF, Sachdeva M (1990) Binding of beta-lactam antibiotics to penicillin-binding proteins in methicillin-resistant Staphylococcus aureus. J Infect Dis 161:1170–1176

    Article  PubMed  CAS  Google Scholar 

  26. Feldman WE (1976) Concentrations of bacteria in cerebrospinal fluid of patients with bacterial meningitis. J Pediatrics 88:549–552

    Article  CAS  Google Scholar 

  27. Fowler VG, Scheld WM, Bayer AS (2005) Endocarditis and intravascular infections. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practice of infectious diseases. Elsevier, PA, p 980

    Google Scholar 

  28. Cui L, Tominaga E, Neoh H-M, Hiramatsu K (2006) Correlation between reduced daptomycin susceptibility and vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 50:1079–1082

    Article  PubMed  CAS  Google Scholar 

  29. Sakoulas G, Alder J, Thauvin-Eliopoulos C, Moellering RC, Eliopoulos GM (2006) Induction of daptomycin heterogeneous susceptibility in Staphylococcus aureus by exposure to vancomycin. Antimicrob Agents Chemother 50:1581–1585

    Article  PubMed  CAS  Google Scholar 

  30. Delgado A, Riordan JT, Lamichhane-Khada R, Winnett DC, Jimenez J, Robinson K, O’Brien FG, Cantore SA, Gustafson JE (2007) Hetero-vancomycin intermediate methicillin-resistant Staphylococcus aureus isolate from a medical center in las Cruces, New Mexico. J Clin Microbiol 45:1325–1329

    Article  PubMed  CAS  Google Scholar 

  31. Euba G, Lora-Tamayo J, Murillo O, Pedrero S, Cabo J, Verdaguer R, Ariza J (2009) Pilot study of ampicillin-ceftriaxone combination for treatment of orthopedic infections due to Enterococcus faecalis. Antimicrob Agents Chemother 53:4305–4310

    Article  PubMed  CAS  Google Scholar 

  32. Gavalda J, Len O, Miro JM, Munoz P, Montejo M, Alarcon A, Torre-Cisneros JDL, Pena C, Martinez-Lacasa X, Sarria C, Bou G, Aguado JM, Navas E, Romeu J, Marco F, Torres C, Tornos P, Planes A, Falco V, Almirante B, Pahissa A (2007) Treatment of Enterococcus faecalis endocarditis with ampicillin plus ceftriaxone. Ann Intern Med 146:574–579

    Article  PubMed  Google Scholar 

  33. Mainardi J-L, Gutmann L, Acar JF, Goldstein FW (1995) Synergistic effect of amoxicillin and cefotaxime against Enterococcus faecalis. Antimicrob Agents Chemother 39:1984–1987

    Article  PubMed  CAS  Google Scholar 

  34. Miro JM, Cervera C, Garcia-de-la-Maria C, Rio AD, Armero Y, Mestres CA, Grau JM, Marco F, Moreno A (2008) Success of ampicillin plus ceftriaxone rescue therapy for a relapse of Enterococcus faecalis native-valve endocarditis and in vitro data on double beta-lactam activity. Scand J Infect Dis 40:968–972

    Article  PubMed  Google Scholar 

  35. Pasticci MB, Mencacci A, Moretti A, Palladino N, Lapalorcia LM, Bistoni F, Baldelli F (2008) In vitro antimicrobial activity of ampicillin-ceftriaxone and ampicillin-ertapenem combinations against clinical isolates of Enterococcus faecalis with high levels of aminoglycoside resistance. Open Microbiol J 2:79–84

    Article  PubMed  CAS  Google Scholar 

  36. Leski TA, Tomasz A (2005) Role of penicillin-binding protein 2 (PBP2) in the antibiotic susceptibility and cell wall cross-linking of Staphylococcus aureus: Evidence for the cooperative functioning of PBP2, PBP4, and PBP2a. J Bacteriol 187:1815

    Article  PubMed  CAS  Google Scholar 

  37. Georgopapadakou NH, Dix BA, Mauriz YR (1986) Possible physiological functions of penicillin-binding proteins in Staphylococcus aureus. Antimicrob Agents Chemother 29:333–336

    Article  PubMed  CAS  Google Scholar 

  38. Matsuda K, Asahi Y, Sanada M, Nakagawa S, Tanaka N, Inoue M (1991) In vitro activity of imipenem combined with beta-lactam antibiotics for methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 27:809–815

    Article  PubMed  CAS  Google Scholar 

  39. Sumita Y, Mitsuhashi S (1991) In vitro synergistic activity between meropenem and other beta-lactams against methicillin-resistant Staphylococcus aureus. New Antimicrob Agents 10:77–84

    CAS  Google Scholar 

  40. Higgins PG, Rosato AE, Seifert H, Archer GL, Wisplinghoff H (2009) Differential expression of ccrA in methicillin-resistant Staphylococcus aureus strains carrying staphylococcal cassette chromosome mec type II and IVa elements. Antimicrob Agents Chemother 53:4556–4558

    Article  PubMed  CAS  Google Scholar 

  41. Truven Health Analytics (2010) Micromedex®1.0 (Healthcare Series) evTRHI. Greenwood Village, Colorado, USA. Available at: http://www.thomsonhc.com. Accessed May 5, 2010

  42. Chambers HF, Kartalija M, Sande M (1995) Ampicillin, sulbactam, and rifampin combination treatment of experimental methicillin-resistant Staphylococcus aureus endocarditis in rabbits. J Infect Dis 171:897–902

    Article  PubMed  CAS  Google Scholar 

  43. Chambers HF, Miller MH (1987) Emergence of resistance to cephalothin and gentamicin during combination therapy for methicillin-resistant Staphylococcus aureus endocarditis in rabbits. J Infect Dis 155:581–585

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mark S. Rouse, Mayo Clinic, for helpful discussion and technical assistance, and are very grateful to Li Basuino, Binh Diep, and Henry Chambers of University of California, San Francisco, for providing strains and technical advice. M.G.F. was supported in part by funds from the German National Academic Foundation.

Funding

This work was supported by the Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN.

Transparency declarations

All authors: No conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, R., Fernandez, M.G., Enthaler, N. et al. Combinations of cefoxitin plus other β-lactams are synergistic in vitro against community associated methicillin-resistant Staphylococcus aureus . Eur J Clin Microbiol Infect Dis 32, 827–833 (2013). https://doi.org/10.1007/s10096-013-1817-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-013-1817-9

Keywords

Navigation