Skip to main content
Log in

How does cognition evolve? Phylogenetic comparative psychology

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abouheif E (1999) A method for testing the assumption of phylogenetic independence in comparative data. Evol Ecol Res 1:895–909

    Google Scholar 

  • Albiach-Serrano A, Guillen-Salazar F, Call J (2007) Mangabeys (Cercocebus torquatus lunulatus) solve the reverse contingency task without a modified procedure. Anim Cogn 10(4):387–396

    Article  PubMed  Google Scholar 

  • Amici F, Aureli F, Call J (2008) Fission-fusion dynamics, behavioral flexibility, and inhibitory control in primates. Curr Biol 18(18):1415–1419

    Article  PubMed  CAS  Google Scholar 

  • Amici F, Call J, Aureli F (2009) Variation in withholding of information in three monkey species. Proc R Soc B-Biol Sci 276(1671):3311–3318

    Article  Google Scholar 

  • Amici F, Aureli F, Call J (2010) Monkeys and Apes: are their cognitive skills really so different? Am J Phys Anthropol 143(2):188–197

    Article  PubMed  Google Scholar 

  • Arnold C, Nunn CL (2010) Phylogenetic targeting of research effort in evolutionary biology. Am Nat 176:601–612

    Google Scholar 

  • Arnold C, Matthews LJ, Nunn CL (2010) The 10k trees website: a new online resource for primate phylogeny. Evol Anthropol 19(3):114–118

    Article  Google Scholar 

  • Atlas Collaboration (2010) Charged-particle multiplicities in pp interactions at root s = 900 GeV measured with the ATLAS detector at the LHC ATLAS collaboration. Phys Lett B 688(1):21–42

    Article  CAS  Google Scholar 

  • Aureli F, Shaffner C, Boesch C, Bearder S, Call J, Chapman C, Connor R, Di Fiore A, Dunbar RIM, Henzi SP (2008) Fission-fusion dynamics: new research frameworks. Curr Anthropol 49(4):627–654

    Article  Google Scholar 

  • Balda RP, Kamil AC (1989) A comparative-study of cache recovery by 3 Corvid species. Anim Behav 38:486–495

    Article  Google Scholar 

  • Balda RP, Kamil AC (2006) Linking life zones, life history traits, ecology, and spatial cognition in four allopatric southwestern seed caching corvids. In: Brown MF, Cook RG (eds) Animal spatial cognition: comparative, neural, and computational approaches. http://www.pigeon.psy.tufts.edu/asc/balda/

  • Banerjee K, Chabris CF, Johnson VE, Lee JJ, Tsao F, Hauser MD (2009) General intelligence in another primate: individual differences across cognitive task performance in a new world monkey (Saguinus oedipus). Plos One 4(6):e5883

    Article  PubMed  CAS  Google Scholar 

  • Barrett L, Henzi P (2005) The social nature of primate cognition. Proc R Soc B-Biol Sci 272(1575):1865–1875

    Article  Google Scholar 

  • Barrett L, Dunbar RIM, Lycett J (2002) Human evolutionary psychology. Princeton University Press, Princeton

    Google Scholar 

  • Barton RA (1996) Neocortex size and behavioural ecology in primates. Proc R Soc Lond Ser B Biol Sci 263(1367):173–177

  • Barton RA (1998) Visual specialization and brain evolution in primates. Proc R Soc Lond Ser B-Biol Sci 265(1409):1933–1937

    Article  CAS  Google Scholar 

  • Baum D (2008) Reading a phylogenetic tree: the meaning of monophyletic groups. Nat Educ 1(1)

  • Baum DA, Smith SD, Donovan SSS (2005) Evolution—the tree-thinking challenge. Science 310(5750):979–980

    Article  PubMed  CAS  Google Scholar 

  • Beach FA (1950) The snark was a boojum. Am Psychol 5:115–124

    Article  Google Scholar 

  • Bekoff M, Allen C, Burghardt GM (2002) The cognitive animal: empirical and theoretical perspectives on animal cognition. MIT Press, Cambridge

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2010) GenBank. Nucleic Acids Res 38:D46–D51

    Article  PubMed  CAS  Google Scholar 

  • Bitterman ME (1960) Toward a comparative psychology of learning. Am Psychol 15(11):704–712

    Article  Google Scholar 

  • Bitterman ME (1965) Phyletic differences in learning. Am Psychol 20(6):396–410

    Article  PubMed  CAS  Google Scholar 

  • Bitterman ME (1975) The comparative analysis of learning. Science 188(4189):699–709

    Article  PubMed  CAS  Google Scholar 

  • Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57(4):717–745

    PubMed  Google Scholar 

  • Bond AB, Kamil AC, Balda RP (2003) Social complexity and transitive inference in corvids. Anim Behav 65:479–487

    Article  Google Scholar 

  • Bond AB, Wei CA, Kamil AC (2010) Cognitive representation in transitive inference: a comparison of four corvid species. Behav Process 85(3):283–292

    Article  Google Scholar 

  • Burke D, Cieplucha C, Cass J, Russell F, Fry G (2002) Win-shift and win-stay learning in the short-beaked echidna (Tachyglossus aculeatus). Anim Cogn 5(2):79–84

    Article  PubMed  Google Scholar 

  • Byrne RW, Whiten AW (1988) Machiavellian intelligence: social expertise and the evolution of intellect in monkeys, apes, and humans. Clarendon Press, Oxford

    Google Scholar 

  • Cann HM et al (2002) A human genome diversity cell line panel. Science 296(5566):261–262

    Article  PubMed  CAS  Google Scholar 

  • Cheney DL, Seyfarth RM (1990) How monkeys see the world: inside the mind of another species. University of Chicago Press, Chicago

    Google Scholar 

  • Clayton NS, Krebs JR (1994) Memory for spatial and object-specific cues in food-storing and nonstoring birds. J Comp Physiol Sens Neural Behav Physiol 174(3):371–379

    Google Scholar 

  • Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284(5420):1670–1672

    Article  PubMed  CAS  Google Scholar 

  • Czeschlik T (1998) Animal cognition—the phylogeny and ontogeny of cognitive abilities. Anim Cogn 1(1):1–2

    Article  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  • Darwin C (1872) Expression emotion in man and animals. John Murray, London

    Book  Google Scholar 

  • de Waal FBM, Tyack PL (2003) Animal social complexity: intelligence, culture, and individualized societies. Harvard University Press, Cambridge

    Google Scholar 

  • Deaner RO, Nunn CL, van Schaik CP (2000) Comparative tests of primate cognition: different scaling methods produce different results. Brain Behav Evol 55(1):44–52

    Article  PubMed  CAS  Google Scholar 

  • Deaner R, van Schaik C, Johnson V (2006) Do some taxa have better domain-general cognition than others? A meta-analysis of nonhuman primate studies. Evol Psychol 4:149–196

    Google Scholar 

  • Deaner RO, Isler K, Burkart J, van Schaik C (2007) Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav Evol 70(2):115–124

    Article  PubMed  Google Scholar 

  • Diamond A (1990) Developmental time course in human infants and infant monkeys, and the neural bases of, inhibitory control in reaching. Ann N Y Acad Sci 608:637–669; discussion 669–676

    Google Scholar 

  • Drea CM, Carter AN (2009) Cooperative problem solving in a social carnivore. Anim Behav 78(4):967–977

    Article  Google Scholar 

  • Dunbar RI (1992) Neocortex size as a constraint on group size in primates. J Hum Evol 20:469–493

    Article  Google Scholar 

  • Dunbar RI (1998) The social brain hypothesis. Evol Anthropol 6(5):178–190

    Article  Google Scholar 

  • Dunbar RI, Shultz S (2007) Evolution in the social brain. Science 317(5843):1344–1347

    Article  PubMed  CAS  Google Scholar 

  • Emery NJ, Clayton NS (2004) The mentality of crows: convergent evolution of intelligence in corvids and apes. Science 306(5703):1903–1907

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125(1):1–15

    Article  Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Sunderland

    Google Scholar 

  • Fitch WT, Huber L, Bugnyar T (2010) Social cognition and the evolution of language: constructing cognitive phylogenies. Neuron 65(6):795–814

    Article  PubMed  CAS  Google Scholar 

  • Fragaszy DM, Perry S (2003) The biology of traditions: models and evidence. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Franz M, Nunn CL (2009) Rapid evolution of social learning. J Evol Biol 22(9):1914–1922

    Article  PubMed  CAS  Google Scholar 

  • Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat 160(6):712–726

    Article  PubMed  CAS  Google Scholar 

  • Fredman T, Whiten A (2008) Observational learning from tool using models by human-reared and mother-reared capuchin monkeys (Cebus apella). Anim Cogn 11(2):295–309

    Article  PubMed  Google Scholar 

  • Galef BG, Laland KN (2005) Social learning in animals: empirical studies and theoretical models. Bioscience 55(6):489–499

    Article  Google Scholar 

  • Gallup GG (1970) Chimpanzees: self-recognition. Science 167(3914):86

    Google Scholar 

  • Garland T, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41(1):18–32

    Google Scholar 

  • Garland T, Midford PE, Ives AR (1999) An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral values. Am Zool 39(2):374–388

    Google Scholar 

  • Garland T, Bennett AF, Rezende EL (2005) Phylogenetic approaches in comparative physiology. J Exp Biol 208(16):3015–3035

    Article  PubMed  Google Scholar 

  • Grafen A (1989) The phylogenetic regression. Philos Trans R Soc Lond Ser B-Biol Sci 326(1233):119–157

    Article  CAS  Google Scholar 

  • Griffin DR (1978) Prospects for a cognitive ethology. Behav Brain Sci 1(4):527–538

    Article  Google Scholar 

  • Grosenick L, Clement TS, Fernald RD (2007) Fish can infer social rank by observation alone. Nature 445(7126):429–432

    Article  PubMed  CAS  Google Scholar 

  • Harcourt AH, de Waal FBM (1992) Coalitions and alliances in humans and other animals. Oxford University Press, Oxford

  • Hare B (2007) From nonhuman to human mind—what changed and why? Curr Direct Psychol Sci 16(2):60–64

    Article  Google Scholar 

  • Hare B (2011) From hominoid to hominid mind: what changed and why? Ann Rev Anthropol 40:293–309

    Article  Google Scholar 

  • Hare B, Brown M, Williamson C, Tomasello M (2002) The domestication of social cognition in dogs. Science 298(5598):1634–1636

    Article  PubMed  CAS  Google Scholar 

  • Hare B, Plyusnina I, Ignacio N, Schepina O, Stepika A, Wrangham R, Trut L (2005) Social cognitive evolution in captive foxes is a correlated by-product of experimental domestication. Curr Biol 15(3):226–230

    Article  PubMed  CAS  Google Scholar 

  • Hare B, Melis AP, Woods V, Hastings S, Wrangham R (2007) Tolerance allows bonobos to outperform Chimpanzees on a cooperative task. Curr Biol 17(7):619–623

    Article  PubMed  CAS  Google Scholar 

  • Harlow HF (1953) Mice, monkeys, men, and motives. Psychol Rev 60(1):23–32

    Article  PubMed  CAS  Google Scholar 

  • Harlow HF, Harlow MK, Meyer DR (1950) Learning motivated by a manipulation drive. J Exp Psychol 40(2):228–234

    Article  PubMed  CAS  Google Scholar 

  • Harmon L, Weir J, Brock C, Glor R, Challenger W, Hunt G (2009) geiger: analysis of evolutionary diversification

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford series in ecology and evolution, vol 1. Oxford University Press, Oxford

    Google Scholar 

  • Harvey PH, Brown AJL, Smith JM, Nee S (eds) (1996) New uses for new phylogenies. Oxford University Press, New York

    Google Scholar 

  • Haun DBM, Jordan FM, Vallortigara G, Clayton NS (2010) Origins of spatial, temporal and numerical cognition: insights from comparative psychology. Trends Cogn Sci 14(12):552–560

    Article  PubMed  Google Scholar 

  • Hauser MD (1996) The evolution of communication. MIT Press, Cambridge

    Google Scholar 

  • Hauser MD (1999) Perseveration, inhibition and the prefrontal cortex: a new look. Curr Opin Neurobiol 9(2):214–222

    Article  PubMed  CAS  Google Scholar 

  • Healy SD, Rowe C (2007) A critique of comparative studies of brain size. Proc R Soc B-Biol Sci 274(1609):453–464

    Article  Google Scholar 

  • Heilbronner SR, Rosati AG, Stevens JR, Hare B, Hauser MD (2008) A fruit in the hand or two in the bush? Divergent risk preferences in Chimpanzees and bonobos. Biol Lett 4(3):246–249

    Article  PubMed  Google Scholar 

  • Henrich J, Boyd R, Bowles S, Camerer C, Fehr E, Gintis H, McElreath R, Alvard M, Barr A, Ensminger J, Henrich NS, Hill K, Gil-White F, Gurven M, Marlowe FW, Patton JQ, Tracer D (2005) “Economic man” in cross-cultural perspective: behavioral experiments in 15 small-scale societies. Behav Brain Sci 28(6):795

    Google Scholar 

  • Herrmann E, Call J, Hernandez-Lloreda MV, Hare B, Tomasello M (2007) Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. Science 317(5843):1360–1366

    Article  PubMed  CAS  Google Scholar 

  • Herrmann E, Hare B, Call J, Tomasello M (2010a) Differences in the cognitive skills of bonobos and Chimpanzees. Plos One 5(8):e12438

    Google Scholar 

  • Herrmann E, Hernandez-Lloreda MV, Call J, Hare B, Tomasello M (2010b) The structure of individual differences in the cognitive abilities of children and Chimpanzees. Psychol Sci 21(1):102–110

    Article  PubMed  Google Scholar 

  • Hodos W, Campbell CB (1969) Scala naturae—why there is no theory in comparative psychology. Psychol Rev 76(4):337

    Google Scholar 

  • Holekamp KE (2007) Questioning the social intelligence hypothesis. Trends Cogn Sci 11(2):65–69

    Article  PubMed  Google Scholar 

  • Hoppitt W, Laland KN (2008) Social processes influencing learning in animals: a review of the evidence. Adv Study Behav 38:105–165

    Google Scholar 

  • Horner V, Whiten A (2005) Causal knowledge and imitation/emulation switching in chimpanzees (Pan trogiodytes) and children (Homo sapiens). Anim Cogn 8(3):164–181

    Article  PubMed  Google Scholar 

  • Huelsenbeck JP, Rannala B, Masly JP (2000) Accommodating phylogenetic uncertainty in evolutionary studies. Science 288(5475):2349–2350

    Article  PubMed  CAS  Google Scholar 

  • Huffman MA, Spiezio C, Sgaravatti A, Leca JB (2010) Leaf swallowing behavior in chimpanzees (Pan troglodytes): biased learning and the emergence of group level cultural differences. Anim Cogn 13(6):871–880

    Article  PubMed  Google Scholar 

  • Humphrey NK (1976) The social function of intellect. In: Bateson PPG, Hinde RA (eds) Growing points in ethology. Cambridge University Press, Cambridge, pp 303–317

    Google Scholar 

  • Isler K, van Schaik CP (2009) The expensive brain: a framework for explaining evolutionary changes in brain size. J Hum Evol 57(4):392–400

    Article  PubMed  Google Scholar 

  • Isler K, Christopher Kirk E, Miller JMA, Albrecht GA, Gelvin BR, Martin RD (2008) Endocranial volumes of primate species: scaling analyses using a comprehensive and reliable data set. J Hum Evol 55(6):967–978

    Article  PubMed  Google Scholar 

  • Ives AR, Midford PE, Garland T (2007) Within-species variation and measurement error in phylogenetic comparative methods. Syst Biol 56(2):252–270

    Article  PubMed  Google Scholar 

  • Jaakkola K, Guarino E, Rodriguez M, Erb L, Trone M (2010) What do dolphins (Tursiops truncatus) understand about hidden objects? Anim Cogn 13(1):103–120

    Article  PubMed  Google Scholar 

  • Jacobs LF, Spencer WD (1994) Natural space-use patterns and hippocampal site in kangaroo rats. Brain Behav Evol 44(3):125–132

    Article  PubMed  CAS  Google Scholar 

  • Jolly A (1966) Lemur social behavior and primate intelligence. Science 153:501–506

    Article  PubMed  CAS  Google Scholar 

  • Kamil AC (1998) On the proper definition of cognitive ethology. In: Balda RP, Pepperberg IM, Kamil AC (eds) Animal cognition in nature. Academic Press, San Diego, pp 1–28

    Chapter  Google Scholar 

  • Kaminski J, Riedel J, Call J, Tomasello M (2005) Domestic goats, Capra hircus, follow gaze direction and use social cues in an object choice task. Anim Behav 69:11–18

    Article  Google Scholar 

  • Kendal RL, Kendal JR, Hoppitt W, Laland KN (2009) Identifying social learning in animal populations: a new ‘Option-Bias’ method. Plos One 4(8):e6541

    Google Scholar 

  • Kuba MJ, Byrne RA, Burghardt GM (2010) A new method for studying problem solving and tool use in stingrays (Potamotrygon castexi). Anim Cogn 13(3):507–513

    Article  PubMed  Google Scholar 

  • Kummer H, Daston L, Gigerenzer G, Silk J (1997) The social intelligence hypothesis. In: Weingart P, Mitchell SD, Richerson PJ, Maasen S (eds) Human by nature: between biology and the social sciences. Lawrence Erlbaum Associates, Mahwah, pp 157–179

    Google Scholar 

  • Langer J (2006) The heterochronic evolution of primate cognitive development. Biol Theory 1(1):41–43

    Article  Google Scholar 

  • Lefebvre L, Whittle P, Lascaris E, Finkelstein A (1997) Feeding innovations and forebrain size in birds. Anim Behav 53:549–560

    Article  Google Scholar 

  • Lewejohann L, Reinhard C, Schrewe A, Brandewiede J, Haemisch A, Gortz N, Schachner M, Sachser N (2006) Environmental bias? Effects of housing conditions, laboratory environment and experimenter on behavioral tests. Genes Brain Behav 5(1):64–72

    Article  PubMed  CAS  Google Scholar 

  • Lewejohann L, Pickel T, Sachser N, Kaiser S (2010) Wild genius—domestic fool? Spatial learning abilities of wild and domestic guinea pigs. Front Zool 7

  • Liedtke J, Werdenich D, Gajdon G, Huber L, Wanker R (2011) Big brains are not enough: performance of three parrot species in the trap-tube paradigm. Anim Cogn 14(1):143–149. doi:10.1007/s10071-010-0347-4

    Google Scholar 

  • Lindenfors P, Nunn CL, Barton RA (2007) Primate brain architecture and selection in relation to sex. Bmc Biol 5

  • Lockard RB (1971) Reflections on fall of comparative psychology—is there a message for us all. Am Psychol 26(2):168

    Google Scholar 

  • Losos JB (1999) Commentaries—uncertainty in the reconstruction of ancestral character states and limitations on the use of phylogenetic comparative methods. Anim Behav 58:1319–1324

    Article  PubMed  Google Scholar 

  • Macdonald IMV (1997) Field experiments on duration and precision of grey and red squirrel spatial memory. Anim Behav 54:879–891

    Article  PubMed  Google Scholar 

  • MacLean EL, Merritt DJ, Brannon EM (2008) Social organization predicts transitive reasoning in prosimian primates. Anim Behav 76(2):479–486

    Article  PubMed  Google Scholar 

  • Macphail EM (1987) The comparative psychology of intelligence. Behav Brain Sci 10(4):645–656

    Article  Google Scholar 

  • Manrod JD, Hartdegen R, Burghardt GM (2008) Rapid solving of a problem apparatus by juvenile black-throated monitor lizards (Varanus albigularis albigularis). Anim Cogn 11(2):267–273

    Article  PubMed  Google Scholar 

  • Martins EP (1996) Phylogenies and the comparative method in animal behavior. Oxford University Press, New York

    Google Scholar 

  • Matsuzawa T (2001) Primate origins of human cognition and behavior. Springer, New York

    Book  Google Scholar 

  • Matsuzawa T, Tomonaga M, Tanaka M (2006) Cognitive development in chimpanzees. Springer, New York

    Book  Google Scholar 

  • Matthews LJ (2009) Intragroup behavioral variation in white-fronted capuchin monkeys (Cebus albifrons): mixed evidence for social learning inferred from new and established analytical methods. Behaviour 146:295–324

    Article  Google Scholar 

  • Mayr E (1963) Animal species and evolution. Belknap Press of Harvard University Press, Cambridge

  • Miklosi A, Soproni K (2006) A comparative analysis of animals’ understanding of the human pointing gesture. Anim Cogn 9(2):81–93

    Article  PubMed  Google Scholar 

  • Mischel W, Shoda Y, Rodriguez ML (1989) Delay of gratification in children. Science 244(4907):933–938

    Article  PubMed  CAS  Google Scholar 

  • Moffitt TE, Arseneault L, Belsky D, Dickson N, Hancox RJ, Harrington H, Houts R, Poulton R, Roberts BW, Ross S, Sears MR, Thomson WM, Caspi A (2011) A gradient of childhood self-control predicts health, wealth, and public safety. Proc Natl Acad Sci USA 108(7):2693–2698. doi:10.1073/pnas.1010076108

  • Morgan CL (1894) An introduction to comparative psychology. The Contemporary science series, vol 27. Walter Scott, London

    Google Scholar 

  • Muller CA (2010) Do anvil-using banded mongooses understand means-end relationships? A field experiment. Anim Cogn 13(2):325–330

    Article  PubMed  Google Scholar 

  • Nunn CL (2011) The comparative approach in evolutionary anthropology and biology. The University of Chicago Press, Chicago

  • Nunn CL, Barton RA (2001) Comparative methods for studying primate adaptation and allometry. Evol Anthropol 10(3):81–98

    Article  Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401(6756):877–884

    Article  PubMed  CAS  Google Scholar 

  • Pagel M, Lutzoni F (2002) Accounting for phylogenetic uncertainty in comparative studies of evolution and adaptation. In: Lässig M, Valleriani A (eds) Biological evolution and statistical physics. Springer, Berlin, pp 148–161

    Chapter  Google Scholar 

  • Pagel M, Meade A (2006) Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am Nat 167(6):808–825

    Article  Google Scholar 

  • Pagel M, Meade A, Barker D (2004) Bayesian estimation of ancestral character states on phylogenies. Syst Biol 53(5):673–684

    Article  PubMed  Google Scholar 

  • Papini MR (2002) Pattern and process in the evolution of learning. Psychol Rev 109(1):186–201

    Article  PubMed  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) Analyses of phylogenetics and evolution. Bioinformatics 20:289–290

    Article  PubMed  CAS  Google Scholar 

  • Parker ST, McKinney ML (1999) Origins of intelligence: the evolution of cognitive development in monkeys, apes, and humans. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Paz-y-Miño CG, Bond AB, Kamil AC, Balda RP (2004) Pinyon jays use transitive inference to predict social dominance. Nature 430(7001):778–781

    Article  CAS  Google Scholar 

  • Piaget J (1954) The construction of reality in the child. Basic Books, New York

  • Plotnik JM, de Waal FBM, Reiss D (2006) Self-recognition in an Asian elephant. Proc Natl Acad Sci USA 103(45):17053–17057

    Article  PubMed  CAS  Google Scholar 

  • Povinelli DJ (1993) Reconstructing the evolution of mind. Am Psychol 48(5):493–509

    Article  PubMed  CAS  Google Scholar 

  • Povinelli DJ, Rulf AB, Landau KR, Bierschwale DT (1993) Self-recognition in chimpanzees (pan troglodytes)—distribution, ontogeny, and patterns of emergence. J Comp Psychol 107(4):347–372

    Article  PubMed  CAS  Google Scholar 

  • Pravosudov VV, Smulders TV (2010) Integrating ecology, psychology and neurobiology within a food-hoarding paradigm. Philos Trans R Soc B-Biol Sci 365(1542):859–867

    Article  Google Scholar 

  • Proops L, Burden F, Osthaus B (2009) Mule cognition: a case of hybrid vigour? Anim Cogn 12(1):75–84

    Article  PubMed  Google Scholar 

  • Proops L, Walton M, McComb K (2010) The use of human-given cues by domestic horses, Equus caballus, during an object choice task. Anim Behav 79(6):1205–1209

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. Vienna, Austria

  • Reader SM, Laland KN (2002) Social intelligence, innovation, and enhanced brain size in primates. Proc Natl Acad Sci 99(7):4436–4441

    Article  PubMed  CAS  Google Scholar 

  • Reader SM, Hager Y, Laland KN (2011) The evolution of primate general and cultural intelligence. Philos Trans R Soc B-Biol Sci 366(1567):1017–1027

    Article  Google Scholar 

  • Rendell L, Fogarty L, Hoppitt WJE, Morgan TJH, Webster MM, Laland KN (2011) Cognitive culture: theoretical and empirical insights into social learning strategies. Trends Cogn Sci 15(2):68–76

    Article  PubMed  Google Scholar 

  • Revell LJ (2010) Phylogenetic signal and linear regression on species data. Methods Ecol Evol 1(4):319–329

    Article  Google Scholar 

  • Richter SH, Garner JP, Zipser B, Lewejohann L, Sachser N, Touma C, Schindler B, Chourbaji S, Brandwein C, Gass P, van Stipdonk N, van der Harst J, Spruijt B, Voikar V, Wolfer DP, Wurbel H (2011) Effect of population heterogenization on the reproducibility of mouse behavior: a multi-laboratory study. Plos One 6(1):e16461

    Google Scholar 

  • Rohlf FJ (2006) A comment on phylogenetic correction. Evolution 60(7):1509–1515

    Article  PubMed  Google Scholar 

  • Rosati AG, Hare B (2009) Looking past the model species: diversity in gaze-following skills across primates. Curr Opin Neurobiol 19(1):45–51

    Article  PubMed  CAS  Google Scholar 

  • Rosati AG, Hare B (2011) Chimpanzees and bonobos distinguish between risk and ambiguity. Biol Lett 7(1):15–18

    Article  PubMed  Google Scholar 

  • Rumbaugh DM, Pate JL (1984) The evolution of cognition in primates: a comparative perspective. In: Roitblat L, Bever TG, Terrace HS (eds) Animal cognition. Lawrence Erlbaum Associates, Hillsdale, pp 569–587

    Google Scholar 

  • Sandel AA, MacLean E, Hare B (2011) Evidence from four lemur species that ringtailed lemur social cognition converges with that of haplorhine primates. Anim Behav 81:925–931

    Article  Google Scholar 

  • Savage A, Snowdon CT (1989) Apples and oranges—the pitfalls of comparative intelligence. Behav Brain Sci 12(3):605–606

    Article  Google Scholar 

  • Schluter D, Price T, Mooers AO, Ludwig D (1997) Likelihood of ancestor states in adaptive radiation. Evolution 51(6):1699–1711

    Article  Google Scholar 

  • Sherry DF, Jacobs LF, Gaulin SJC (1992) Spatial memory and adaptive specialization of the hippocampus. Trends Neurosci 15(8):298–303

    Article  PubMed  CAS  Google Scholar 

  • Shettleworth SJ (1990) Spatial memory in food-storing birds. Philos Trans R Soc B-Biol Sci 329(1253):143–151

    Article  Google Scholar 

  • Shettleworth SJ (1995) Comparative studies of memory in food storing birds: from the field to the Skinner box. In: Alleva E, Fasolo A, Lipp HP, Nadel L, Ricceri L (eds) Behavioral brain research in naturalistic and semi-naturalistic settings. Kluwer, Dordrecht, pp 159–192

    Chapter  Google Scholar 

  • Shettleworth SJ (2009) The evolution of comparative cognition: is the snark still a boojum? Behav Process 80(3):210–217

    Article  Google Scholar 

  • Shettleworth SJ (2010) Cognition, evolution, and behavior. Oxford University Press, Oxford

    Google Scholar 

  • Shultz S, Dunbar RIM (2010) Species differences in executive function correlate with hippocampus volume and neocortex ratio across nonhuman primates. J Comp Psychol 124(3):252–260

    Article  PubMed  Google Scholar 

  • Skinner BF (1938) The behavior of organisms: an experimental analysis. Appleton-Century-Crofts, New York

    Google Scholar 

  • Thierry B, Aureli F, Nunn CL, Petit O, Abegg C, De Waal FBM (2008) A comparative study of conflict resolution in macaques: insights into the nature of trait covariation. Anim Behav 75:847–860. doi:10.1016/j.anbehav.2007.07.006

    Google Scholar 

  • Thorndike EL (1911) Animal intelligence; experimental studies. On cover: the animal behavior series. The Macmillan company, New York

  • Tinbergen N (1963) On aims and methods of ethology. Zeitschrift für Tierpsychologie 20:410–433

    Google Scholar 

  • Tomasello M, Call J (1997) Primate cognition. Oxford University Press, New York

    Google Scholar 

  • Tomasello M, Call J (2008) Assessing the validity of ape-human comparisons: a reply to Boesch (2007). J Comp Psychol 122(4):449–452

    Article  PubMed  Google Scholar 

  • Tomasello M, Call J, Hare B (1998) Five primate species follow the visual gaze of conspecifics. Anim Behav 55:1063–1069

    Article  PubMed  Google Scholar 

  • Torigoe T (1985) Comparison of object manipulation among 74 species of non-human primates. Primates 26(2):182–194

    Article  Google Scholar 

  • Waisman AS, Jacobs LF (2008) Flexibility of cue use in the fox squirrel (Sciurus niger). Anim Cogn 11(4):625–636

    Article  PubMed  Google Scholar 

  • Watson JB (1967) Behavior; an introduction to comparative psychology. A Henry Holt edition in psychology. Holt, New York

  • Whiten A (2003) Social complexity and social intelligence. In: Bock GR, Goode JA, Webb K (eds) The nature of intelligence. John Wiley & Sons, Chichester, pp 185–201. http://onlinelibrary.wiley.com/book/10.1002/0470870850

  • Whiten A, van Schaik CP (2007) The evolution of animal ‘cultures’ and social intelligence. Philos Trans R Soc B-Biol Sci 362(1480):603–620

    Article  Google Scholar 

  • Wobber VT, Hare B (2011) Psychological health of orphan bonobos and chimpanzees in African sanctuaries. Plos One 6(6):e17147

    Article  PubMed  CAS  Google Scholar 

  • Woods V, Hare B (2010) Think outside the lab: African sanctuaries as a new resource for non-invasive research on great apes. In: Mills D (ed) Encyclopedia of animal behavior and welfare. CABI publishing, Wallingford

    Google Scholar 

  • Wright RVS (1972) Imitative learning of a flaked stone technology—the case of an orangutan. Mankind 8(4):296–306

    Google Scholar 

  • Yerkes RM (1943) Chimpanzees; a laboratory colony. Oxford University Press, London

    Google Scholar 

Download references

Acknowledgments

We thank Sara Shettleworth and two anonymous reviewers for their helpful comments on a previous draft of this article. We thank Natalie Cooper for advice regarding phylogenetic comparative methods. This work was supported by the National Evolutionary Synthesis Center (NESCent) through support of a working group lead by Charlie Nunn and Brian Hare. NESCent is supported by the NSF #EF-0905606. This work was also supported in part by European Research Commission Advanced Grant Agreement 233297 and National Science Foundation grants NSF-BCS-08-27552-02 and NSF-BCS-10-25172 to B.A.H. and National Science Foundation grant NSF- BCS-0923791 to C.L.N. For training in phylogenetic comparative methods, we thank the AnthroTree Workshop (supported by NSF BCS-0923791).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan L. MacLean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacLean, E.L., Matthews, L.J., Hare, B.A. et al. How does cognition evolve? Phylogenetic comparative psychology. Anim Cogn 15, 223–238 (2012). https://doi.org/10.1007/s10071-011-0448-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-011-0448-8

Keywords

Navigation