Skip to main content
Log in

Novel quantitative method for the degree of branching in dextran

  • Research Note
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

A novel quantitative method for the determination of degree of branching in Leuconostoc mesenteroides B-512F dextran was developed by using the combination of 3 dextran-degrading enzymes. First, Paenibacillus sp. endo-dextranase was randomly degraded B-512F dextran into linear or branched isomalto-oligosaccharides with various degree of polymerization (2–8). Second, Streptococcus mutans dextran glucosidase hydrolyzed linear or branched isomalto-oligosaccharides into glucose and branched isomalto-penta-saccharides. Third, the branched isomaltopenta-saccharide was degraded into glucose by using Bacteroides thetaimicron α-glucosidase. The number of branching points in B-512F dextran (5.42%) was determined by the difference in the amount of glucose in the reaction digest between BTGase-PDex and DGase-PDex treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Robyt JF. Mechanisms in the glucansucrase synthesis of polysaccharides and oligosaccharides from sucrose. Adv. Carbohyd. Chem. Bi. 51: 133–168 (1995)

    Article  CAS  Google Scholar 

  2. Cleve JWV, Schaefer WC, Rist CE. The structure of NRRL B-512 dextran: Methylation studies. J. Am. Soc. Chem. 78: 4435–4438 (1956)

    Article  Google Scholar 

  3. Henrissat B, Davies GJ. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struc. Biol. 7: 637–644 (1997)

    Article  CAS  Google Scholar 

  4. Saburi W, Mori H, Saito S, Okuyama M, Kimura A. Structural elements in dextran glucosidase responsible for high specificity to long chain substrate. Biochim. Biophys. Acta 1764: 688–698 (2006)

    CAS  Google Scholar 

  5. Mizuno M, Tonozuka T, Suzuki S, Uotsu-Tomita R, Kamitori S, Nishikawa A, Sakano Y. Structural insights into substrate specificity and function of glucodextranase. J. Biol. Chem. 279: 10575–10583 (2004)

    Article  CAS  Google Scholar 

  6. Hatada Y, Hidaka Y, Nogi Y, Uchimura K, Katayama K, Li Z, Akita M, Ohta Y, Goda S, Ito H, Matsui H, Ito S, Horikoshi K. Hyperproduction of an isomalto-dextranase of an Arthrobacter sp. by a protease-deficient Bacillus subtilis: Sequencing, properties, and crystallization of the recombinant enzyme. Appl. Microbiol. Biot. 65: 583–592 (2004)

    Article  CAS  Google Scholar 

  7. Mizuno T, Mori H, Ito H, Matsui H, Kimura A, Chiba S. Molecular cloning of isomaltotrio-dextranase gene from Brevibacterium fuscum var. dextranlyticum strain 0407 and its expression in Escherichia coli. Biosci. Biotech. Bioch. 63: 1582–1588 (1999)

    Article  CAS  Google Scholar 

  8. Khalikova E, Susi P, Korpela T. Microbial dextran-hydrolyzing enzymes: Fundamentals and applications. Microbiol. Mol. Biol. R. 69: 306–325 (2005)

    Article  CAS  Google Scholar 

  9. Walker GJ, Pulkownik A. Degradation of dextrans by an α-1,6-glucan glucanohydrolase from Streptococcus mitis. Carbohyd. Res. 29: 1–14 (1973)

    Article  CAS  Google Scholar 

  10. Walker GJ, Pulkownik A. Action of α-1,6-glucan glucanohydrolase oligosaccharides derived from dextran. Carbohyd. Res. 36: 53–66 (1974)

    Article  CAS  Google Scholar 

  11. Kawamoto T, Oguma T. α-1,3-Branched dextran-hydrolyzing enzyme gene, and recombinant DNA α-1,3-production of branched dextranhydrolyzing enzymes. Jpn. Patent No. 2001-54382 (2001)

  12. Kitamura M, Okuyama M, Tanzawa F, Mori H, Kitago Y, Watanabe N, Kimura A, Tanaka I, Yao M. Structural and functional analysis of a glycoside hydrolase family 97 enzyme from Bacteroides thetaiotaomicron. J. Biol. Chem. 283: 36328–36227 (2008)

    Article  CAS  Google Scholar 

  13. Kim HS, Kim D, Ryu HJ, Robyt JF. Cloning and sequencing of the α-1-6 dextransucrase gene from Leuconostoc mesenteroides B-742CB. J. Micriobiol. Biotechn. 10: 559–563 (2000)

    CAS  Google Scholar 

  14. Kim D, Robyt JF. Dextransucrase constitutive mutants of Leuconostoc mesenteroides B-1299. Enzyme Microbial. Tech. 17: 1050–1056 (1995)

    Article  CAS  Google Scholar 

  15. Kim YM. Catalytic mechanism and molecular structure of dextranase having intramolecular transglycosylation activity from Paenibacillus sp. Ph.D thesis, Hokkaido University, Sapporo, Japan (2005)

    Google Scholar 

  16. Bradford MM. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254 (1976)

    Article  CAS  Google Scholar 

  17. McFeeter RF. A manual method for reducing sugar determinations with 2,2′-bicinchoninate reagent. Anal. Biochem. 103: 302–306 (1980)

    Article  Google Scholar 

  18. Miwa I, Okuno J, Maeda K, Okuda G. Mutarotase effect on colorimetric determination of blood glucose with β-D-glucose oxidase. Clin. Chim. Acta 37: 538–540 (1972)

    Article  CAS  Google Scholar 

  19. Bounias M. N-(1-Naphthyl)ethylenediamine dihydrochloride as a new reagent for nanomole quantification of sugars on thin-layer plates by a mathematical calibration process. Anal. Biochem. 106: 291–295 (1980)

    Article  CAS  Google Scholar 

  20. Mukerjea R, Kim D, Robyt JF. Simplified and improved methylation analysis of saccharides, using a modified procedure and thin-layer chromatography. Carbohyd. Res. 292: 11–20 (1996)

    CAS  Google Scholar 

  21. Ryu SJ, Kim D, Ryu HJ, Chiba S, Kimura A, Kim D. Purification and partial characterization of a novel glucanhydrolase from Lipomyces starkeyi KSM 22 and its use for inhibition of insoluble glucan formation. Biosci. Biotech. Bioch. 64: 223–228 (2000)

    Article  CAS  Google Scholar 

  22. Lee JH, Kim GH, Kim SH, Cho DL, Kim DW, Day DF, Kim D. Treatment with glucanhyddrolase from Lipomyces starkeyi for removal of soluble polysaccharide in sugar processing. J. Micriobiol. Biotechn. 16: 983–987 (2006)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doman Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YM., Kimura, A. & Kim, D. Novel quantitative method for the degree of branching in dextran. Food Sci Biotechnol 20, 537–541 (2011). https://doi.org/10.1007/s10068-011-0075-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-011-0075-9

Keywords

Navigation