Skip to main content

Advertisement

Log in

The association between single-nucleotide polymorphisms of NCF2 and systemic lupus erythematosus in Chinese mainland population

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Systemic lupus erythematosus (SLE) is a complex immune disease. The genetic variation in the NCF2 gene was found to associate with SLE in US and European populations. However, the association of rs10911363 with SLE was not extensively studied in Chinese mainland population. A total of 488 SLE patients and 380 controls were recruited. Unlabeled probe-based high-resolution melting analysis (HRMA) was used in genotyping. HRMA with unlabeled probe successfully distinguished all genotypes. Neither genotype nor allele frequencies of single-nucleotide polymorphism (SNP) rs10911363 showed statistically significant differences between SLE patients and controls. The association of SNP rs10911363 with the diagnostic criteria of SLE was also examined. Minor allele (G) of rs10911363 was found to significantly associate with the incidence of arthritis (p = 0.024, odds ratio (OR) = 1.35, and 95% confidence interval (CI) = 1.04–1.75) and increased abnormalities of antinuclear antibody (p = 0.002, OR = 1.51, and 95%CI = 1.17–1.95) and anti-DNA (p = 0.013, OR = 1.40, and 95%CI = 1.07–1.82). Polymorphisms of rs13277113 in NCF2 gene were associated with arthritis and autoantibody production, but not disease risk, of SLE in Chinese population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. El-Benna J, Dang PM, Gougerot-Pocidalo MA, Elbim C (2005) Phagocyte NADPH oxidase: a multicomponent enzyme essential for host defenses. Arch Immunol Ther Exp (Warsz) 53:199–206

    CAS  Google Scholar 

  2. Mizuki K, Takeya R, Kuribayashi F, Nobuhisa I, Kohda D et al (2005) A region c-terminal to the proline-rich core of p47phox regulates activation of the phagocyte NADPH oxidase by interacting with the c-terminal sh3 domain of p67phox. Arch Biochem Biophys 444:185–194

    Article  PubMed  CAS  Google Scholar 

  3. Honbou K, Minakami R, Yuzawa S, Takeya R, Suzuki NN et al (2007) Full-length p40phox structure suggests a basis for regulation mechanism of its membrane binding. EMBO J 26:1176–1186

    Article  PubMed  CAS  Google Scholar 

  4. Lapouge K, Smith SJ, Walker PA, Gamblin SJ, Smerdon SJ, Rittinger K (2000) Structure of the tpr domain of p67phox in complex with rac.Gtp. Mol Cell 6:899–907

    PubMed  CAS  Google Scholar 

  5. Nisimoto Y, Motalebi S, Han CH, Lambeth JD (1999) The p67(phox) activation domain regulates electron flow from NADPH to flavin in flavocytochrome b(558). J Biol Chem 274:22999–23005

    Article  PubMed  CAS  Google Scholar 

  6. Roos D, Kuhns DB, Maddalena A, Bustamante J, Kannengiesser C et al (2010) Hematologically important mutations: the autosomal recessive forms of chronic granulomatous disease (second update). Blood Cells Mol Dis 44:291–299

    Article  PubMed  CAS  Google Scholar 

  7. Pons-Estel GJ, Alarcon GS, Scofield L, Reinlib L, Cooper GS (2010) Understanding the epidemiology and progression of systemic lupus erythematosus. Semin Arthritis Rheum 39:257–268

    Article  PubMed  Google Scholar 

  8. Gaubitz M (2006) Epidemiology of connective tissue disorders. Rheumatology (Oxford) 45(Suppl 3):iii3–iii4

    Article  Google Scholar 

  9. Edwards CJ, Cooper C (2006) Early environmental exposure and the development of lupus. Lupus 15:814–819

    Article  PubMed  CAS  Google Scholar 

  10. Block SR, Winfield JB, Lockshin MD, D'Angelo WA, Christian CL (1975) Studies of twins with systemic lupus erythematosus. A review of the literature and presentation of 12 additional sets. Am J Med 59:533–552

    Article  PubMed  CAS  Google Scholar 

  11. Harley JB, Alarcon-Riquelme ME, Criswell LA, Jacob CO, Kimberly RP et al (2008) Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in itgam, pxk, kiaa1542 and other loci. Nat Genet 40:204–210

    Article  PubMed  CAS  Google Scholar 

  12. Hom G, Graham RR, Modrek B, Taylor KE, Ortmann W et al (2008) Association of systemic lupus erythematosus with c8orf13-blk and itgam-itgax. N Engl J Med 358:900–909

    Article  PubMed  CAS  Google Scholar 

  13. Kozyrev SV, Abelson AK, Wojcik J, Zaghlool A, Linga Reddy MV et al (2008) Functional variants in the b-cell gene bank1 are associated with systemic lupus erythematosus. Nat Genet 40:211–216

    Article  PubMed  CAS  Google Scholar 

  14. Graham RR, Cotsapas C, Davies L, Hackett R, Lessard CJ et al (2008) Genetic variants near tnfaip3 on 6q23 are associated with systemic lupus erythematosus. Nat Genet 40:1059–1061

    Article  PubMed  CAS  Google Scholar 

  15. Han JW, Zheng HF, Cui Y, Sun LD, Ye DQ et al (2009) Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 41:1234–1237

    Article  PubMed  CAS  Google Scholar 

  16. Gateva V, Sandling JK, Hom G, Taylor KE, Chung SA et al (2009) A large-scale replication study identifies tnip1, prdm1, jazf1, uhrf1bp1 and il10 as risk loci for systemic lupus erythematosus. Nat Genet 41:1228–1233

    Article  PubMed  CAS  Google Scholar 

  17. Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40:1725

    Article  PubMed  CAS  Google Scholar 

  18. Montgomery J, Wittwer CT, Palais R, Zhou L (2007) Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis. Nat Protoc 2:59–66

    Article  PubMed  CAS  Google Scholar 

  19. Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ (2003) High-resolution genotyping by amplicon melting analysis using lcgreen. Clin Chem 49:853–860

    Article  PubMed  CAS  Google Scholar 

  20. JIN O, SUN L, KAVIKONDALA S, C-S LAU (2006) Innate immunity and systemic lupus erythematosus. APLAR Journal of Rheumatology 9:359–364

    Article  Google Scholar 

  21. Olsson LM, Lindqvist AK, Kallberg H, Padyukov L, Burkhardt H et al (2007) A case-control study of rheumatoid arthritis identifies an associated single nucleotide polymorphism in the NCF4 gene, supporting a role for the NADPH-oxidase complex in autoimmunity. Arthritis Res Ther 9:R98

    Article  PubMed  Google Scholar 

  22. Hultqvist M, Holmdahl R (2005) Ncf1 (p47phox) polymorphism determines oxidative burst and the severity of arthritis in rats and mice. Cell Immunol 233:97–101

    Article  PubMed  CAS  Google Scholar 

  23. Olofsson P, Nerstedt A, Hultqvist M, Nilsson EC, Andersson S et al (2007) Arthritis suppression by nadph activation operates through an interferon-beta pathway. BMC Biol 5:19

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by Shenzhen Science and Technology Project.

Disclosures

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Wan or Wei Zhang.

Additional information

Bo Yu, Yuewen Chen, Jun Wan, and Wei Zhang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, B., Chen, Y., Wu, Q. et al. The association between single-nucleotide polymorphisms of NCF2 and systemic lupus erythematosus in Chinese mainland population. Clin Rheumatol 30, 521–527 (2011). https://doi.org/10.1007/s10067-010-1567-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-010-1567-3

Keywords

Navigation