Skip to main content
Log in

Interaction between pericytes and endothelial cells leads to formation of tight junction in hyaloid vessels

  • Research Article
  • Published:
Molecules and Cells

Abstract

The hyaloid vessel is a transient vascular network that nourishes the lens and the primary vitreous in the early developmental periods. In hyaloid vessels devoid of the support of astrocytes, we demonstrate that tight junction proteins, zonula occludens-1 and occludin, are regularly expressed at the junction of endothelial cells. To figure out the factor influencing the formation of tight junctions in hyaloid vessels, we further progress to investigate the interactions between endothelial cells and pericytes, two representative constituent cells in hyaloid vessels. Interestingly, endothelial cells interact with pericytes in the early postnatal periods and the interaction between two cell types provokes the up-regulation of transforming growth factor β1. Further in vitro experiments demonstrate that transforming growth factor β1 induces the activation of Smad2 and Smad3 and the formation of tight junction proteins. Taken together, in hyaloid vessels, pericytes seem to regulate the formation of tight junctions by the interaction with endothelial cells even without the support of astrocytes. Additionally, we suggest that the hyaloid vessel is a valuable system that can be utilized for the investigation of cell-cell interaction in the formation of tight junctions in developing vasculatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, N.J., Patabendige, A.A., Dolman, D.E., Yusof, S.R., and Begley, D.J. (2010). Structure and function of the blood-brain barrier. Neurobiol. Dis. 37, 13–25.

    Article  PubMed  CAS  Google Scholar 

  • Antonetti, D.A., Barber, A.J., Hollinger, L.A., Wolpert, E.B., and Gardner, T.W. (1999). Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J. Biol. Chem. 274, 23463–23467.

    Article  PubMed  CAS  Google Scholar 

  • Armulik, A., Genove, G., Mae, M., Nisancioglu, M.H., Wallgard, E., Niaudet, C., He, L., Norlin, J., Lindblom, P., Strittmatter, K., et al. (2010). Pericytes regulate the blood-brain barrier. Nature 468, 557–561.

    Article  PubMed  CAS  Google Scholar 

  • Bjarnegard, M., Enge, M., Norlin, J., Gustafsdottir, S., Fredriksson, S., Abramsson, A., Takemoto, M., Gustafsson, E., Fassler, R., and Betsholtz, C. (2004). Endothelium-specific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities. Development 131, 1847–1857.

    Article  PubMed  CAS  Google Scholar 

  • Brown, A.S., Leamen, L., Cucevic, V., and Foster, F.S. (2005). Quantitation of hemodynamic function during developmental vascular regression in the mouse eye. Invest. Ophthalmol. Vis. Sci. 46, 2231–2237.

    Article  PubMed  Google Scholar 

  • Daneman, R., Zhou, L., Kebede, A.A., and Barres, B.A. (2010). Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468, 562–566.

    Article  PubMed  CAS  Google Scholar 

  • Dohgu, S., Yamauchi, A., Takata, F., Naito, M., Tsuruo, T., Higuchi, S., Sawada, Y., and Kataoka, Y. (2004). Transforming growth factor-beta1 upregulates the tight junction and P-glycoprotein of brain microvascular endothelial cells. Cell. Mol. Neurobiol. 24, 491–497.

    Article  PubMed  CAS  Google Scholar 

  • Dohgu, S., Takata, F., Yamauchi, A., Nakagawa, S., Egawa, T., Naito, M., Tsuruo, T., Sawada, Y., Niwa, M., and Kataoka, Y. (2005). Brain pericytes contribute to the induction and up-regulation of blood-brain barrier functions through transforming growth factorbeta production. Brain Res. 1038, 208–215.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, C.M., Darland, D.C., Massingham, L.J., and D’Amore, P.A. (2004). Endothelial cell-astrocyte interactions and TGF beta are required for induction of blood-neural barrier properties. Brain Res. Dev. Brain Res. 152, 25–38.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, P., Lindsten, T., Tolentino, M., Thompson, C.B., Bennett, J., and Dunaief, J.L. (2005). Persistent fetal ocular vasculature in mice deficient in bax and bak. Arch. Ophthalmol. 123, 797–802.

    Article  PubMed  Google Scholar 

  • Hamming, N.A., Apple, D.J., Gieser, D.K., and Vygantas, C.M. (1977). Ultrastructure of the hyaloid vasculature in primates. Invest. Ophthalmol. Vis. Sci. 16, 408–415.

    PubMed  CAS  Google Scholar 

  • Ito, M., and Yoshioka, M. (1999). Regression of the hyaloid vessels and pupillary membrane of the mouse. Anat. Embryol. 200, 403–411.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.H., Park, J.A., Lee, S.W., Kim, W.J., Yu, Y.S., and Kim, K.W. (2006). Blood-neural barrier: intercellular communication at gliovascular interface. J. Biochem. Mol. Biol. 39, 339–345.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.H., Yu, Y.S., Kim, K.W., and Min, B.H. (2007). The role of clusterin in in vitro ischemia of human retinal endothelial cells. Curr. Eye Res. 32, 693–698.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.H., Yu, Y.S., Kim, D.H., and Kim, K.W. (2009a). Recruitment of pericytes and astrocytes is closely related to the formation of tight junction in developing retinal vessels. J. Neurosci. Res. 87, 653–659.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.H., Lee, Y.M., Ahn, E.M., Kim, K.W., and Yu, Y.S. (2009b). Decursin inhibits VEGF-mediated inner blood-retinal barrier breakdown by suppression of VEGFR-2 activation. J. Cereb. Blood Flow Metab. 29, 1559–1567.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.H., Yu, Y.S., Mun, J.Y., and Kim, K.W. (2010a). Autophagyinduced regression of hyaloid vessels in early ocular development. Autophagy 6, 922–928.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.H., Yu, Y.S., Min, B.H., and Kim, K.W. (2010b). Protective effect of clusterin on blood-retinal barrier breakdown in diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 51, 1659–1665.

    Article  PubMed  Google Scholar 

  • Kim, J.H., Yu, Y.S., Kim, K.W., and Kim, J.H. (2011). Investigation of barrier characteristics in the hyaloid-retinal vessel of zebrafish. J. Neurosci. Res. 89, 921–928.

    Article  PubMed  Google Scholar 

  • Koto, T., Takubo, K., Ishida, S., Shinoda, H., Inoue, M., Tsubota, K., Okada, Y., and Ikeda, E. (2007). Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells. Am. J. Pathol. 170, 1389–1397.

    Article  PubMed  CAS  Google Scholar 

  • Lang, R.A., and Bishop, J.M. (1993). Macrophages are required for cell death and tissue remodeling in the developing mouse eye. Cell 74, 453–462.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.M., and Yu, Y.S. (2004). Outcome of hyperplastic persistent pupillary membrane. J. Pediatr. Ophthalmol. Strabismus 41, 163–171.

    PubMed  Google Scholar 

  • Lindahl, P., Johansson, B.R., Leveen, P., and Betsholtz, C. (1997). Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277, 242–245.

    Article  PubMed  CAS  Google Scholar 

  • Ling, T.L., and Stone, J. (1988). The development of astrocytes in the cat retina: evidence of migration from the optic nerve. Brain Res. Dev. Brain Res. 44, 73–85.

    Article  PubMed  CAS  Google Scholar 

  • McLeod, D.S., Hasegawa, T., Baba, T., Grebe, R., Galtier d’Auriac, I., Merges, C., Edwards, M., and Lutty, G.A. (2012). From blood islands to blood vessels: morphologic observations and expression of key molecules during hyaloid vascular system development. Invest. Ophthalmol. Vis. Sci. 53, 7912–7927.

    Article  PubMed  CAS  Google Scholar 

  • Ozerdem, U., Grako, K.A., Dahlin-Huppe, K., Monosov, E., and Stallcup, W.B. (2001). NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev. Dyn. 222, 218–227.

    Article  PubMed  CAS  Google Scholar 

  • Saint-Geniez, M., and D’Amore, P.A. (2004). Development and pathology of the hyaloid, choroidal and retinal vasculature. Int. J. Dev. Biol. 48, 1045–1058.

    Article  PubMed  Google Scholar 

  • Tallquist, M.D., French, W.J., and Soriano, P. (2003). Additive effects of PDGF receptor beta signaling pathways in vascular smooth muscle cell development. PLoS Biol. 1, E52.

    Article  PubMed  Google Scholar 

  • Walshe, T.E., Saint-Geniez, M., Maharaj, A.S., Sekiyama, E., Maldonado, A.E., and D’Amore, P.A. (2009). TGF-beta is required for vascular barrier function, endothelial survival and homeostasis of the adult microvasculature. PLoS One 4, e5149.

    Article  PubMed  Google Scholar 

  • Zhu, M., Provis, J.M., and Penfold, P.L. (1999). The human hyaloid system: cellular phenotypes and inter-relationships. Exp. Eye Res. 68, 553–563.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeong Hun Kim or Chung-Hyun Cho.

About this article

Cite this article

Jo, D.H., Kim, J.H., Heo, JI. et al. Interaction between pericytes and endothelial cells leads to formation of tight junction in hyaloid vessels. Mol Cells 36, 465–471 (2013). https://doi.org/10.1007/s10059-013-0228-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-0228-1

Keywords

Navigation