Skip to main content
Log in

Identifying responsive functional modules from protein-protein interaction network

  • Minireview
  • Published:
Molecules and Cells

Abstract

Proteins interact with each other within a cell, and those interactions give rise to the biological function and dynamical behavior of cellular systems. Generally, the protein interactions are temporal, spatial, or condition dependent in a specific cell, where only a small part of interactions usually take place under certain conditions. Recently, although a large amount of protein interaction data have been collected by high-throughput technologies, the interactions are recorded or summarized under various or different conditions and therefore cannot be directly used to identify signaling pathways or active networks, which are believed to work in specific cells under specific conditions. However, protein interactions activated under specific conditions may give hints to the biological process underlying corresponding phenotypes. In particular, responsive functional modules consist of protein interactions activated under specific conditions can provide insight into the mechanism underlying biological systems, e.g. protein interaction subnetworks found for certain diseases rather than normal conditions may help to discover potential biomarkers. From computational viewpoint, identifying responsive functional modules can be formulated as an optimization problem. Therefore, efficient computational methods for extracting responsive functional modules are strongly demanded due to the NP-hard nature of such a combinatorial problem. In this review, we first report recent advances in development of computational methods for extracting responsive functional modules or active pathways from protein interaction network and microarray data. Then from computational aspect, we discuss remaining obstacles and perspectives for this attractive and challenging topic in the area of systems biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adamcsek, B., Palla, G., Farkas, I., Derényi, I., and Vicsek, T. (2006). Cfinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22, 1021–1023.

    Article  PubMed  CAS  Google Scholar 

  • Albert, R., DasGupta, B., Dondi, R., Kachalo, S., Sontag, E., Zelikovsky, A., and Westbrooks, K. (2007). A novel method for signal transduction network inference from indirect experimental evidence. J. Comput. Biol. 14, 927–949.

    Article  PubMed  CAS  Google Scholar 

  • Alon, N., Yuster, R., and Zwick, U. (1995). Color-coding. J. ACM. 42, 844–856.

    Article  Google Scholar 

  • Arga, K., Önsan, Z., Kiidar, B., Ölgen, K., and Nielsen, J. (2007). Understanding signaling in yeast: insights from network analysis. Biotechnol. Bioeng. 97, 1246–1258.

    Article  PubMed  CAS  Google Scholar 

  • Backes, C., Keller, A., Kuentzer, J., Kneissl, B., Comtesse, N., Elnakady, Y., Müller, R., Meese, E., and Lenhof, H. (2007). Gene Trail-advanced gene set enrichment analysis. Nucleic Acids Res. 35, W186–W192.

    Article  PubMed  Google Scholar 

  • Bader, G., and Hogue, C. (2003). An automated method for finding molecular complexes in large protein interaction networks, BMC Bioinformatics 4, 2.

    Article  PubMed  Google Scholar 

  • Barabási., A.L., and OltVai, Z.N. (2004). Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113.

    Article  PubMed  Google Scholar 

  • Bebek, G., and Yang, J. (2007). Pathfinder: mining signal transduction pathway segments from protein-protein interaction networks. BMC Bioinformatics 8, 335.

    Article  PubMed  Google Scholar 

  • Bild, A., and Febbo, P. (2005). Application of a priori established gene sets to discover biologically important differential expression in microarray data. Proc. Natl. Acad. Sci. USA 102, 15278–15279.

    Google Scholar 

  • Cabusora, L., Sutton, E., Fulmer, A., and Forst, C. (2005). Differential network expression during drug and stress response. Biofinromatics 21, 2898–2905.

    Article  CAS  Google Scholar 

  • Chen, X., Wang, L., Smith, J., and Zhang, P. (2008). Supervised principal component analysis for gene set enrichment of microarray data with continuous or survival outcomes. Bioinformatics 24, 2474–2481.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L., Wang, R., and Zhang, X.S. (2009). Biomolecular networks: methods and applications in systems biology (New Jersey, USA: Wiley Interscience).

    Google Scholar 

  • Cho, Y., Hwang, W., Ramanathan, M., and Zhang, A. (2007). Semantic integration to identify overlapping functional modules in protein interaction networks. BMC Bioinformatics 8, 265.

    Article  PubMed  Google Scholar 

  • Chu, W., and Ghahramani, Z. (2006). Identifying protein complexes in high-throughput protein interaction screens using an infinite latent feature model. Pacific Symposium on Biocomputing 11, 231–242.

    Article  Google Scholar 

  • Chu, H., and Chen, B. (2008). Construction of a cancer-perturbed protein-protein interaction network for discovery of apoptosis drug targets. BMC Syst. Biol. 2, 56.

    Article  PubMed  Google Scholar 

  • Chuang, H., Lee, E., Liu, Y., Lee, D., and Ideker, T. (2007). Network-based classification of breast cancer metastasis. Mol. Syst. Biol. 3, 140.

    Article  PubMed  Google Scholar 

  • Dittrich, M., Klau, G., Rosenwald, A., Dandekarand, T., and Muller, T. (2008). Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics 24, i223–i231.

    Article  PubMed  CAS  Google Scholar 

  • Guo, Z., Li, Y., Gong, X., Yao, C., Ma, W., Wang, D., Li, Y., Zhu, J., Zhang, M., Yang, D., et al. (2007). Edge-based scoring and searching method for identifying condition-responsive proteinprotein interaction sub-network. Bioinformatics 23, 2121–2128.

    Article  PubMed  CAS  Google Scholar 

  • Han, J., Bertin, N., Hao, T., Goldberg, D., Berriz, G., Zhang, L., Dupuy, D., Walhout, A., Cusick, M., Roth, F., et al. (2004). Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430, 88–93.

    Article  PubMed  CAS  Google Scholar 

  • Hirsh, E., and Sharan, R. (2006). Identification of conserved protein complexes based on a model of protein network evolution. Bioinformatics 23, e170–e176.

    Article  Google Scholar 

  • Holden, M., Deng, S., Wojnowski, L., and Kulle, B. (2008). GSEASNP: applying gene set enrichment analysis to SNP data from genome-wide association studies. Bioinformatics 24, 2784–2785.

    Article  PubMed  CAS  Google Scholar 

  • Huang, R., Wallqvist, A., and Covell, D. (2006). Targeting changes in cancer: assessing pathway stability by comparing pathway gene expression coherence levels in tumor and normal tissues. Mol. Cancer Ther. 5, 2417–2427.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, W., Cho, Y., Zhang, A., and Ramanathan, M. (2006). A novel functional module detection algorithm for protein-protein interaction networks. Algorithms Mol. Biol. 1, 24.

    Article  PubMed  Google Scholar 

  • Ideker, T., and Sharan, R. (2008). Protein networks in disease. Genome Res. 18, 644–652.

    Article  PubMed  CAS  Google Scholar 

  • Ideker, T., Ozier, O., schwikowski, B., and Siegel, A. (2002). Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18, S233–S240.

    PubMed  Google Scholar 

  • Jansen, R., Greenbaum, D., and Gerstein, M. (2002). Relating whole-genome expression data with protein-protein interactions. Genome Res. 12, 37–46.

    Article  PubMed  CAS  Google Scholar 

  • Kann, M. (2007). Protein interactions and disease: computational approaches to uncover the etiology of diseases. Brief. Bioinform. 8, 333–346.

    Article  PubMed  CAS  Google Scholar 

  • King, A., Pržulj, N., and Jurisica, I. (2004). Protein complex prediction via cost-based clustering. Bioinformatics 20, 3013–3020.

    Article  PubMed  CAS  Google Scholar 

  • Li, S., Assmann, S., and Albert, R. (2006). Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol. 4, e312.

    Article  PubMed  Google Scholar 

  • Liu, Y., and Zhao, H. (2004). A computational approach for ordering signal transduction pathway components from genomics and proteomics data. BMC Bioinformatics 5, 158.

    Article  PubMed  Google Scholar 

  • Liu, M., Liberzon, A., Kong, S., Lai, W., Park, P., Kohane, I., and Kasif, S. (2007). Network-based analysis of affected biological processes in type 2 diabetes models. PLOS Genet. 3, e96.

    Article  PubMed  Google Scholar 

  • Mete, M., Tang, F., Xu, X., and Yuruk, N. (2008). A structural approach for finding functional modules from large biological networks. BMC Bioinformatics 9, S19.

    Article  PubMed  Google Scholar 

  • Murali, T., and Rivera, C. (2008). Network legos: buiding blocks of cellular wiring diagrams. J. Comput. Biol. 15, 829–844.

    Article  PubMed  CAS  Google Scholar 

  • Nacu, S., Critchley-Thorne, R., Lee, P., and Holmes, S. (2007). Gene expression network analysis and applications to immunology. Bioinformatics 23, 850–858.

    Article  PubMed  CAS  Google Scholar 

  • Nettleton, D., Recknor, J., and Reecy, J. (2008). Identification of differentially expressed gene categories in microarray studies using nonparametric multivariate analysis. Bioinformatics 24, 192–201.

    Article  PubMed  CAS  Google Scholar 

  • Noisel, J., Sanguinetti, G., and Wright, P. (2008). Identifying differentially- expressed subnetworks with MMG. Bioinformatics 24, 2792–2793.

    Article  Google Scholar 

  • Oron, A., Jiang, Z., and Gentleman, R. (2008). Gene set enrichment analysis using linear models and diagnostics. Bioinformatics 24, 2586–2591.

    Article  PubMed  CAS  Google Scholar 

  • Pereira-Leal, J., Enright, A., and Ouzounis, C. (2004). Detection of functional modules from protein interaction networks. Proteins 54, 49–57.

    Article  PubMed  CAS  Google Scholar 

  • Qi, Y., Balem, F., Faloutsos, C., Klein-Seetharaman, J., and Bar-Joseph, Z. (2008). Protein complex identification by supervised graph local clustering. Bioinformatics 24, i250–i258.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, Y., and Zhang, S. (2008). Uncovering Differentially expressed Pathways with protein Interation and gene expression data. Lecture Notes in Operations Res. 9, 74–82.

    Google Scholar 

  • Qiu, Y., Zhang, S., Zhang, X-S., and Chen, L. (2009). Identifying differentially expressed pathways by high throughput data. IET Syst. Biol. (in press).

  • Rahnenfuhrer, J., Domingues, F., Maydt, J., and Lengauer, T. (2004). Calculating the statistical significance of changes in pathway activity from gene expression data. Stat. Appl. Gen. Mol. Biol. 3, Article 16.

  • Rajagopalan, D., and Agarwal, P. (2005). Inferring pathways from gene lists using a literature-derived network of biological relationships. Bioinformatics 21, 788–793.

    Article  PubMed  CAS  Google Scholar 

  • Scholtens, D., Vidal, M., and Gentleman, R. (2005). Local modeling of global interactome networks. Bioinformatics 21, 3548–3557.

    Article  PubMed  CAS  Google Scholar 

  • Scott, M., Perkins, T., Bunnell, S., Pepin, F., Thomas, D., and Hallett, M. (2005). Identifying regulatory subnetworks for a set of genes. Mol. Cell. Proteomics 4, 683–692.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J., Ideker, T., Karp, R., and Sharan, R. (2006). Efficient algorithms for detecting signaling pathways in protein interaction networks. J. Comput. Biol. 13, 133–144.

    Article  PubMed  CAS  Google Scholar 

  • Sharan, R., Ideker, T., Kelley, B.P., Shamir, R., and Karp, R.M. (2005). Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data. J. Comput. Biol. 12, 835–846.

    Article  PubMed  CAS  Google Scholar 

  • Sohler, F., Hanisch, D., and Zimmer, R. (2004). New methods for joint analysis of biological networks and expression data. Bioinformatics 20, 1517–1521.

    Article  PubMed  CAS  Google Scholar 

  • Spirin, V., and Mirny, L. (2003). Protein complexes and functional modules in molecular networks. Proc. Natl Acad. Sci. USA 100, 12123–12128.

    Article  PubMed  CAS  Google Scholar 

  • Steffen, M., Petti, A., Aach, J., D’haeseleer, P., and Church, G. (2002). Automated modelling of signal transduction networks. BMC Bioinformatics 3, 34.

    Article  PubMed  Google Scholar 

  • Subramaniana, A., Tamayo, P., Mootha, V., Mukherjee, S., Ebert, B., Gillette, M., Paulovich, A., Pomeroy, S., Golub, T., Lander, E., et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550.

    Article  Google Scholar 

  • Suderman, M., and Michael, H. (2007). Tools for visually exploring biological networks. Bioinformatics 23, 2651–2659.

    Article  PubMed  CAS  Google Scholar 

  • Turanalp, M., and Can, T. (2008). Discovering functional interaction patterns in protein-protein interaction networks. BMC Bioinformatics 9, 276.

    Article  PubMed  Google Scholar 

  • Ulitsky, I., Karp, M., and Shamir, R. (2008). Detecting diseasespecific dysregulated pathways via analysis of clinical expression profiles. Lect. N. Bioinformat. (RECOMB2008) 4955, 347–359.

    Google Scholar 

  • Wang, Y., and Xia, Y. (2008). Condition specific subnetwork identification using an optimization model. Lecture Notes in Operations Res. 9, 333–340.

    Google Scholar 

  • Wang, R., Zhang, S., Zhang, X., and Chen, L. (2006). Identifying modules in complex networks by a graph-theoretical method and its application in protein interaction networks. Lect. N. Bioinformat. 4682, 1090–1101.

    Google Scholar 

  • Watts, D., and Atrogatz, S. (1998). Collective dynamics of ’small word’ networks. Nature 393, 440–442.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S., Ning, X., and Zhang, X. (2006). Identification of functional modules in a PPI network by clique percolaion clusering. Comput. Biol. Chem. 30, 445–451.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S., Jin, G., Zhang, X., and Chen, L. (2007). Discovering functions and revealing mechanisms at molecular level from biological networks. Proteomics 7, 2856–2869.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X., Wang, R., Chen, L., and Aihara, K. (2008a). Automatic modeling of signal pathways from protein-protein interaction networks. In A., Brazma, S., Miyano, and T., Akutsu, eds., Proceedings of The 6th Asia Pacific Bioinformatics Conference, Vol. 6 of Serias on advances in bioinformatics and computational biology Imperial College Press, Singapore, 287–296.

  • Zhao, X., Wang, R., Chen, L., and Aihara, K. (2008b). Uncovering signal transduction networks from high-throughput data by integer linear programming. Nucleic Acids Res. 36, e48.

    Article  PubMed  Google Scholar 

  • Zhao, X., Wang, R., Chen, L., and Aihara, K. (2009). Automatic modeling of signaling pathways based on network flow model. J. Bioinformat. Computational Biol. (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luonan Chen.

About this article

Cite this article

Wu, Z., Zhao, X. & Chen, L. Identifying responsive functional modules from protein-protein interaction network. Mol Cells 27, 271–277 (2009). https://doi.org/10.1007/s10059-009-0035-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-009-0035-x

Keywords

Navigation