Skip to main content
Log in

Proposition of Single Molecular Orientation Determination Using polarization Controlled Beam by Liquid Crystal Spatial Light Modulators

  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We have proposed a method to control the three-dimensional electric field in the focus of an optical microscope using two non-twisted liquid crystal spatial light modulators, and to detect the molecular orientation of a single molecule. The three-dimensional electric field is generated by focusing the beam with two dimensional spatial distribution of polarization. The possibility of detection of three-dimensional single molecular orientation was shown by numerical calculations. © 2005 The Optical Society of Japan

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Confocal Microscopy, ed. T. Wilson (Academic Press, London, 1990).

    Google Scholar 

  2. L. Novotny, M. Beversluis, K. S. Youngworth and T. G. Brown: Phys. Rev. Lett. 86 (2001) 5251.

    ADS  Google Scholar 

  3. S. A. Empedocles, R. Neuhauser and M. G. Bawendi: Nature 399 (1999) 126.

    ADS  Google Scholar 

  4. N. Huse, A. Schöunle and S. W. Hell: J. Biomed. Opt. 6 (2001) 273.

    ADS  Google Scholar 

  5. D. Pohl: Appl. Phys. Lett. 20 (1972) 266.

    ADS  Google Scholar 

  6. A. V. Nesterov, V. G. Niziev and V. P. Yakunin: J. Phys. D 32 (1999) 2871.

    ADS  Google Scholar 

  7. I. Moshe, S. Jackel and A. Meir: Opt. Lett. 28 (2002) 808.

    Google Scholar 

  8. S. C. Tidwell, D. H. Ford and W. D. Kimura: Appl. Opt. 29 (1990) 2234.

    ADS  Google Scholar 

  9. S. C. Tidwell, G. H. Kim and W. D. Kimura: Appl. Opt. 32 (1993) 5222.

    Article  ADS  Google Scholar 

  10. R. Yamaguchi, T. Nose and S. Sato: Jpn. J. Appl. Phys. 28 (1989) 1730.

    ADS  Google Scholar 

  11. R. Dorn, S. Quabis and G. Leuchs: Phys. Rev. Lett. 91 (2003) 233901.

    ADS  Google Scholar 

  12. M. A. A. Neil, F. Massoumian, R. Juškaitis and T. Wilson: Opt. Lett. 27 (2002) 1929.

    ADS  Google Scholar 

  13. J. A. Davis, D. E. McNamara, D. M. Cottrell and T. Sonehara: Appl. Opt. 39 (2000) 1549.

    Article  ADS  Google Scholar 

  14. Although the Jones matrix of NTLC cell is given by M(V)=( \begin{eqnarry*} \exp\{-\mbox{i}\eta(v/2)\}\qquad 0\\ 0 \qquad \exp\{\mbox{i}\eta(v/2)\} \end{eqnarray*} ) in ref. 13, the retardation is controllable for an extraordinary wave. Since the phase difference not only between ordinary and extraordinary waves but also of each pixel has to be take account,M(V) has to be represented by eq. (3).

  15. J. W. M. Chon, X. Gan and M. Gu: Appl. Phys. Lett. 81 (2002) 1576.

    ADS  Google Scholar 

  16. K. S. Youngworth and T. G. Brown: Opt. Express 7 (2000) 77.

    Article  ADS  Google Scholar 

  17. J. Enderlein: Opt. Lett. 25 (2000) 634.

    ADS  Google Scholar 

  18. We used the sine condition19) instead of Smith-Helmholtz formula.

  19. M. Born and E. Wolf: Principles of Optics (Cambridge University Press, Cambridge, 1999) 6th ed., Chap. IV.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoru Hashimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashimoto, M., Yamada, K. & Araki, T. Proposition of Single Molecular Orientation Determination Using polarization Controlled Beam by Liquid Crystal Spatial Light Modulators. OPT REV 12, 37–41 (2005). https://doi.org/10.1007/s10043-005-0037-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-005-0037-7

Key words

Navigation