Skip to main content
Log in

Soil moisture from operational meteorological satellites

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

In recent years, unforeseen advances in monitoring soil moisture from operational satellite platforms have been made, mainly due to improved geophysical retrieval methods. In this study, four recently published soil-moisture datasets are compared with in-situ observations from the REMEDHUS monitoring network located in the semi-arid part of the Duero basin in Spain. The remotely sensed soil-moisture products are retrieved from (1) the Advanced Microwave Scanning Radiometer (AMSR-E), which is a passive microwave sensor on-board NASA’s Aqua satellite, (2) European Remote Sensing satellite (ERS) scatterometer, which is an active microwave sensor on-board the two ERS satellites and (3) visible and thermal images from the METEOSAT satellite. Statistical analysis indicates that three satellite datasets contribute effectively to the monitoring of trends in surface soil-moisture conditions, but not to the estimation of absolute soil-moisture values. These sensors, or rather their successors, will be flown on operational meteorological satellites in the near future. With further improvements in processing techniques, operational meteorological satellites will increasingly deliver high-quality soil-moisture data. This may be of particular interest for hydrogeological studies that investigate long-term processes such as groundwater recharge.

Résumé

Ces dernières années des avancées inespérées ont été faites dans l’étude de l’humidité du sol à partir de plateformes satellites opérationnelles, principalement grâce à des méthodes de géophysique avancées. Dans cette étude, quatre séries de données récemment publiées sur l’humidité du sol sont comparées avec des observations in-situ issues du réseau d’observation REMEDHUS situé dans la partie semi-aride du bassin de Duero en Espagne. Les données d’humidité du sol issues de la télédétection proviennent (1) d’un radiomètre micro-ondes (AMSR-E), qui est un détecteur de micro-ondes passives embarqué à bord du satellite Aqua de la NASA, (2) du scatteromètre des satellites européens de télédétection (ERS), qui est un détecteur de micro-ondes actives embarqué sur les deux satellites ERS, et (3) des images dans le visible et le thermique enregistrées par le satellite METEOSAT. Une analyse statistique montre que trois séries de données satellites contribuent à l’observation de tendances pour les conditions d’humidité du sol en surface, mais ne permettent pas d’estimer des valeurs absolues d’humidité du sol. Ces détecteurs, ou plutôt leurs successeurs, seront à l’avenir embarqués sur des satellites météorologiques opérationnels. Ces derniers, grâce à des améliorations supplémentaires des techniques de traitement des données, fourniront davantage de données de haute qualité sur l’humidité du sol. Ceci peut être particulièrement intéressant dans le cas d’études hydrogéologiques demandant l’étude de processus à long terme comme la recharge des eaux souterraines.

Resumen

En años recientes se han hecho avances imprevistos en el monitoreo de la humedad del suelo a partir de plataformas operacionales de satélite, principalmente debido al mejoramiento de métodos de recuperación geofísica. En este estudio se comparan tres grupos de datos de humedad del suelo recientemente publicados con observaciones in-situ de la red de monitoreo REMEDHUS que se localiza en la parte semi-árida de la cuenca Duero en España. Los productos de sensores remotos sobre humedad del suelo se recuperan de (1) Radiómetro Avanzado de Exploración con Microondas (AMSR-E) el cual es un sensor pasivo de microondas a bordo del satélite Aqua de NASA, (2) dispersómetro de satélite de Sensores Remotos Europeo (ERS) el cual es un sensor activo de microondas a bordo de los dos satélites ERS, y (3) imágenes visibles y termales del satélite METEOSAT. Los análisis estadísticos indican que los tres grupos de datos de satélite contribuyen efectivamente al monitoreo de tendencias en las condiciones superficiales de humedad del suelo, pero no en la estimación de valores absolutos de humedad del suelo. Estos sensores, o más bien sus sucesores, volarán en satélites meteorológicos operacionales en el futuro cercano. Con un mejoramiento posterior de las técnicas de procesamiento los satélites meteorológicos operacionales continuarán distribuyendo datos de humedad del suelo de alta calidad. Esto puede ser de particular interés para estudios hidrogeológicos que investigan procesos a largo plazo tal como recarga de agua subterránea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Cassel DK, Kachanoski RG, Topp GC (1994) Practical considerations for using a TDR cable tester. Soil Technol 7:113–126

    Article  Google Scholar 

  • Ceballos A, Martínez-Fernández J, Santos F, Alonso P (2002) Soil-water behaviour of sandy soils under semi-arid conditions in the Duero Basin (Spain). J Arid Eviron 51:501–519

    Article  Google Scholar 

  • Ceballos A, Scipal K, Wagner W, Martínez-Fernández J (2005) Validation of ERS scatterometer-derived soil moisture data in the central part of the Duero Basin, Spain. Hydrol Process 19:1549–1566

    Article  Google Scholar 

  • Entekhabi D, Njoku EG, Houser P, Spencer M, Doiron T, Kim Y, Smith J, Girard R, Belair S, Crow W, Jackson TJ, Kerr YH, Kimball JS, Koster R, McDonald KC, O’Neill PE, Pultz T, Running SW, Shi J, Wood E, van Zyl J (2004) The hydrosphere state (Hydros) satellite mission: an Earth system pathfinder for global mapping of soil moisture and land freeze/thaw. IEEE Trans Geosci Remote Sens 42:2184–2195

    Article  Google Scholar 

  • Entin JK, Robocl A, Vinnikov KY, Hollinger SE, Liu S, Namkhai A (2000) Temporal and spatial scales of observed soil moisture variations in the extratropics. J Geophys Res 105:11865–11877

    Article  Google Scholar 

  • Environmental Analysis and Remote Sensing (2006) http://www.ears.nl/. Cited 26 July 2006

  • Jackson TJ (2002) Remote sensing of soil moisture: implications for groundwater recharge. Hydrogeol J 10:40–51

    Article  Google Scholar 

  • Jackson TJ et al (1999) Soil moisture mapping at regional scales using microwave radiometry: The Southern Great Plains Hydrology Experiment. IEEE Trans Geosci Remote Sens 37:2136–2151

    Article  Google Scholar 

  • Kerr YH, Waldteufel P, Wigneron J-P, Martinuzzi J-M, Font J, Berger M (2001) Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans Geosci Remote Sens 39:1729–1735

    Article  Google Scholar 

  • Martínez-Fernández J, Ceballos A (2003) Temporal stability of soil moisture in a large-field experiment in Spain. Soil Sci Soc Am J 67:1647–1656

    Article  Google Scholar 

  • Meesters AGCA, De Jeu RAM, Owe M (2005) Analytical derivation of the vegetation optical depth from the microwave polarization difference index. IEEE Geosci Remote Sens Lett 2:121

    Article  Google Scholar 

  • Mo T, Choudhury BJ, Schmugge TJ, Wang JR, Jackson TJ (1982) A model for microwave emission from vegetation-covered fields. J Geophys Res 87:11229

    Google Scholar 

  • Montanarella L, Nègre T (2001) The development of the Alpine soil information system. Int J Appl Earth Observ Geoinform 3(1):18–24

    Article  Google Scholar 

  • National Snow and Ice Data Centre (2006) AMSR-E/Aqua daily L3 surface soil moisture. http://www.nsidc.org/data/docs/daac/ae_land3_l3_soil_moisture.gd.html. Cited 26 July 2006

  • Njoku EG, Chan TK, Nghiem SV, Jackson TJ, Lakshmi V (2003) Soil moisture retrieval from AMSR-E. IEEE Trans Geosci Remote Sens 41:215–229

    Article  Google Scholar 

  • Owe M, de Jeu R, Walker J (2001) A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans Geosci Remote Sens 39:1643–1654

    Article  Google Scholar 

  • Roebeling RA, Van Putten E, Genovese G, Rosema A (2004) Application of meteosat derived meteorological information for crop yield predictions in Europe. Int J Remote Sens 25(23):5389–5401

    Article  Google Scholar 

  • Rosema A, Verhees L, van Putten E, Gielen H, Lack T, Wood J, Lane A, Fannon J, Estrela T, Dimas M, de Bruin H, Moena A, Meijninger W (2001) European energy and water balance monitoring system. Final Report of 4th Framework Programme of the European Commission Contract Nr. ENV4-CT97-0478, EARS Remote Sensing Consultants, Delft, The Netherlands, pp 147

  • Topp GC, Davis JL, Annan AP (1980) Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour Res 16:574

    Article  Google Scholar 

  • Vauchaud G, Passerat de Silans A, Balabanis P, Vauclin M (1985) Temporal stability of spatially measured soil water probability density function. Soil Sci Soc Am 49:22–828

    Google Scholar 

  • Verstraeten WW, Veroustraete F, van der Sande CJ, Grootaers I, Feyen J (2006) Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests. Remote Sens Environ 101(3):299–314

    Article  Google Scholar 

  • Vienna University of Technology (2006) Global monitoring of the hydrosphere with radar satellites. http://www.ipf.tuwien.ac.at/radar/. Cited 26 July 2006

  • Vinnikov KY, Robock A, Qiu S, Entin JK, Owe M, Choudhsury BJ, Hollinger SE, Njoku EG (1999) Satellite remote sensing of soil moisture in Illinois, United States. J Geophys Res 104:4145–4168

    Article  Google Scholar 

  • Wagner W, Lemoine G, Borgeaud M, Rott H (1999) A study of vegetation cover effects on ERS scatterometer data. IEEE Trans Geosci Remote Sens 37(2):938–948

    Article  Google Scholar 

  • Wagner W, Scipal K, Pathe C, Gerten D, Lucht W, Rudolf B (2003) Evaluation of the agreement between the first global remotely sensed soil moisture data with model and precipitation data. JGR Atmos 108(D19):4611

    Article  Google Scholar 

  • Zegelin SJ, White I, Russel GF (1992) A critique of the time domain reflectometry technique for determining field soil-water content. In: Topp GC, Reynolds WD, Green RE (eds) Advances in measurement of soil physical properties: bringing theory into practice. SSSA Spec. Publ. 30, Soil Science Society of America, Madison, WI, pp 187–208

Download references

Acknowledgements

The study was carried out within the framework of the “Geoland” project funded by the 7th Framework Programme of the European Commission and the GLOBESCAT project funded by the Austrian Science Fund. We would also like to acknowledge the collaborations of colleagues from EARS and NSIDC who provided their data products for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, W., Naeimi, V., Scipal, K. et al. Soil moisture from operational meteorological satellites. Hydrogeol J 15, 121–131 (2007). https://doi.org/10.1007/s10040-006-0104-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-006-0104-6

Keywords

Navigation