Skip to main content

Advertisement

Log in

Inverse problem in hydrogeology

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The state of the groundwater inverse problem is synthesized. Emphasis is placed on aquifer characterization, where modelers have to deal with conceptual model uncertainty (notably spatial and temporal variability), scale dependence, many types of unknown parameters (transmissivity, recharge, boundary conditions, etc.), nonlinearity, and often low sensitivity of state variables (typically heads and concentrations) to aquifer properties. Because of these difficulties, calibration cannot be separated from the modeling process, as it is sometimes done in other fields. Instead, it should be viewed as one step in the process of understanding aquifer behavior. In fact, it is shown that actual parameter estimation methods do not differ from each other in the essence, though they may differ in the computational details. It is argued that there is ample room for improvement in groundwater inversion: development of user-friendly codes, accommodation of variability through geostatistics, incorporation of geological information and different types of data (temperature, occurrence and concentration of isotopes, age, etc.), proper accounting of uncertainty, etc. Despite this, even with existing codes, automatic calibration facilitates enormously the task of modeling. Therefore, it is contended that its use should become standard practice.

Résumé

L’état du problème inverse des eaux souterraines est synthétisé. L’accent est placé sur la caractérisation de l’aquifère, où les modélisateurs doivent jouer avec l’incertitude des modèles conceptuels (notamment la variabilité spatiale et temporelle), les facteurs d’échelle, plusieurs inconnues sur différents paramètres (transmissivité, recharge, conditions aux limites, etc.), la non linéarité, et souvent la sensibilité de plusieurs variables d’état (charges hydrauliques, concentrations) des propriétés de l’aquifère. A cause de ces difficultés, le calibrage ne peut être séparé du processus de modélisation, comme c’est le cas dans d’autres cas de figure. Par ailleurs, il peut être vu comme une des étapes dans le processus de détermination du comportement de l’aquifère. Il est montré que les méthodes d’évaluation des paramètres actuels ne diffèrent pas si ce n’est dans les détails des calculs informatiques. Il est montré qu’il existe une large panoplie de techniques d ‹inversion : codes de calcul utilisables par tout-un-chacun, accommodation de la variabilité via la géostatistique, incorporation d’informations géologiques et de différents types de données (température, occurrence, concentration en isotopes, âge, etc.), détermination de l’incertitude. Vu ces développements, la calibration automatique facilite énormément la modélisation. Par ailleurs, il est souhaitable que son utilisation devienne une pratique standardisée.

Resumen

Se sintetiza el estado del problema inverso en aguas subterráneas. El énfasis se ubica en la caracterización de acuíferos, donde los modeladores tienen que enfrentar la incertidumbre del modelo conceptual (principalmente variabilidad temporal y espacial), dependencia de escala, muchos tipos de parámetros desconocidos (transmisividad, recarga, condiciones limitantes, etc), no linealidad, y frecuentemente baja sensibilidad de variables de estado (típicamente presiones y concentraciones) a las propiedades del acuífero. Debido a estas dificultades, no puede separarse la calibración de los procesos de modelado, como frecuentemente se hace en otros campos. En su lugar, debe de visualizarse como un paso en el proceso de entendimiento del comportamiento del acuífero. En realidad, se muestra que los métodos reales de estimación de parámetros no difieren uno del otro en lo esencial, aunque sí pueden diferir en los detalles computacionales. Se discute que existe amplio espacio para la mejora del problema inverso en aguas subterráneas: desarrollo de códigos amigables al usuario, acomodamiento de variabilidad a través de geoestadística, incorporación de información geológica y diferentes tipos de datos (temperatura, presencia y concentración de isótopos, edad, etc), explicación apropiada de incertidumbre, etc. A pesar de esto, aún con los códigos existentes, la calibración automática facilita enormemente la tarea de modelado. Por lo tanto, se sostiene que su uso debería de convertirse en práctica standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akaike H (1974) A new look at statistical model identification. IEEE Trans Automat Contr AC-19:716–722

    Google Scholar 

  • Akaike H (1977) On entropy maximization principle. In: Krishnaiah PR (ed) Applications of statistics. North Holland, Ámsterdam, pp 27–41

    Google Scholar 

  • Anderman ER, Hill MC (1999) A new multi-stage ground-water transport inverse method, Presentation, evaluation, and implications. Water Resour Res 35(4):1053–1063

    Google Scholar 

  • Barlebo HC, Hill MC, Rosbjerg D (2004) Identification of groundwater parameters at Columbus, Mississippi, using three-dimensional inverse flow and transport model. Water Resour Res 40(4):W0421110

    Google Scholar 

  • Barth GR, Hill MC, Illangasekare TH, Rajaram H (2001) Predictive modeling of flow and transport in a two-dimensional intermediate-scale, heterogeneous porous media. Water Resour Res 37(10):2503–2512

    Google Scholar 

  • Beck MB (1987) Water quality modelling: a review of the analysis of uncertainty. Water Resour Res 23(8):1393–1442

    Google Scholar 

  • Bennet RR, Meyer RR (1952) Geology and groundwater resources of the Baltimore area. Mines and Water Resour Bull 4, Maryland Dept of Geology

  • Beven K (1993) Prophecy, Reality and uncertainty in distributed hydrological modeling. Adv Water Resour 16(1):41–51

    Google Scholar 

  • Beven KJ, Binley AM (1992) The future of distributed models: model calibration and uncertainity prediction. Hydrol Process 6(3):279–298

    Google Scholar 

  • Beven KJ, Freer J (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J Hydrol 249:11–29

    Google Scholar 

  • Bredehoeft J (2004) Modeling: the conceptualization problem-surprise. Hydrogeol J (this issue)

  • Capilla JE, Gómez-Hernández JJ, Sahuquillo A (1998) Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric head data—3. Application to the Culebra formation at the waste isolation pilot plan (WIPP), New Mexico, USA. J Hydrol 207(3–4):254–269

    Google Scholar 

  • Carrera J (1987) State of the art of the inverse problem applied to the flow and solute transport problems. In: Groundwater flow and quality modeling, NATO ASI Ser: 549–585

  • Carrera J, Neuman SP (1986a) Estimation of aquifer parameters under transient and steady-state conditions, 1. Maximum likelihood method incorporating prior information. Water Resour Res 22(2):199–210

    Google Scholar 

  • Carrera J, Neuman SP (1986b) Estimation of aquifer parameters under transient and steady-state conditions, 2. Uniqueness, stability and solution algorithms. Water Resour Res 22(2):211–227

    Google Scholar 

  • Carrera J, Neuman SP (1986c) Estimation of aquifer parameters under transient and steady-state conditions, 3. Application to synthetic and field data. Water Resour Res 22(2):228–242

    Google Scholar 

  • Carrera J, Navarrina F, Vives L, Heredia J, Medina A (1990a) Computational aspects of the inverse problem. In Proc. of VIII international conference on computational methods in water resources. CMP, pp 513–523

  • Carrera J, Heredia J, Vomvoris S, Hufschmied P (1990b) Fracture Flow Modelling: Application of automatic calibration techniques to a small fractured Monzonitic Gneiss Block. In: Neuman N (ed) Proc hydrogeology of low permeability environments, IAHPV, Hydrogeology, selected papers, vol 2, pp 115–167

  • Carrera J, Glorioso L (1991) On Geostatistical Formulations of the Groundwater Flow Inverse Problem. Adv Water Resour 14(5):273–283

    Google Scholar 

  • Carrera J, Medina A, Galarza G (1993a) Groundwater inverse problem. Discussion on geostatistical formulations and validation. Hydrogéologie (4):313–324

  • Carrera J, Mousavi SF, Usunoff E, Sanchez-Vila X, Galarza G (1993b) A discussion on validation of hydrogeological models. Reliability Eng Syst Saf 42:201–216

    Google Scholar 

  • Carrera J, Medina A (1994) An improved form of adjoint-state equations for transient problems. In: Peters, Wittum, Herrling, Meissner, Brebbia, Grau, Pinder (eds) Proc X international conference on methods in water resources, pp 199–206

  • Castro A, Vazquez-Suñe E, Carrera J, Jaen M, Salvany JM (1999) Calibración del modelo regional de flujo subterráneo en la zona de Aznalcóllar, España: ajuste de las extracciones [Calibration of the groundwater flow regional model in the Aznalcollar site, Spain: extractions fit]. In Tineo A (ed) Hidrología Subterránea. II,13. Congreso Argentino de Hidrogeología y IV Seminario Hispano Argentino sobre temas actuales de la hidrogeologia

  • Chen CX, Pei SP, Jiao JJ (2003) Land subsidence caused by groundwater exploitation in Suzhou City, China. Hydrogeol J 11(2):275–287

    Google Scholar 

  • Chen Z, Huang GH, Chakma A, Li J (2002) Application of a GIS-based modeling system for effective management of petroleum-contaminated sites. Env Eng Sci 9(5):291–303

    Google Scholar 

  • Christensen S, Cooley RL (1999) Evaluation of confidence intervals for a steady state leaky aquifer model. Adv Water Resour 22(8):807–817

    Google Scholar 

  • Clifton PM, Neuman SP (1982) Effects of kriging and inverse modeling on conditional simulation of the Avra valley aquifer in southern Arizona. Wat Resour Res 18(4):1215–1234

    Google Scholar 

  • Cooley RL (1977) A method of estimating parameters and assessing reliability for models of steady state groundwater flow, 1, Theory and numerical properties. Water Resour Res 13(2):318–324

    Google Scholar 

  • Cooley RL (1985) A comparison of several methods of solving nonlinear-regression groundwater-flow problems. Water Resour Res 21(10):1525–1538

    Google Scholar 

  • Cooley RL, Konikow LF, Naff RL (1986) Nonlinear regression groundwater-flow modeling of a deep regional aquifer system. Water Resour Res 22(13):1759–1778

    Google Scholar 

  • Dagan G (1985) Stochastic modeling of groundwater flow by unconditional and conditional probabilities: the inverse problem. Water Resour Res 21(1):65–72

    Google Scholar 

  • de Marsily GH, Lavedan G, Boucher M, Fasanino G (1984) Interpretation of interference tests in a well field using geostatistical techniques to fit the permeability distribution in a reservoir model. In: Verly et al (ed) Proc Geostatistics for natural resources characterization. Part 2. D. Reidel Pub. Co. : pp 831–849

  • de Marsily G, Delhomme JP, Delay F, Buoro A (1999) 40 years of inverse problems in hydrogeology. Comptes Rendus de l’Academie des Sciences Series IIA. Earth and Planet Sci 329(2):73–87. Elsevier Science

    Google Scholar 

  • Doherty J, Brebber L, Whyte P (2002) PEST-Modelling dependent parameter estimation. Water Mark Computing. Corinda (Australia)

  • Doherty J (2003) Groundwater model calibration using pilot points and regularization. Ground Water 41(2):170–177

    Google Scholar 

  • Duan QY, Sorooshian S, Gupta V (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28(4):1015–1031

    Google Scholar 

  • Emselem Y, de Marsily G (1971) An automatic solution for the inverse problem. Wat Resour Res 7(5):1264–1283

    Google Scholar 

  • Gavalas GR, Shaw PC, Seinfeld JH, (1976) Reservoir history matching by Bayesian estimation. Soc Petrol Eng J 261:337–350

    Google Scholar 

  • Gogu RC, Carabin G, Hallet V, Peters V, Dassargues A (2001) GIS-based hydrogeological databases and groundwater modeling. Hydrogeol J 9(6):555–569

    Google Scholar 

  • Gómez-Hernández JJ, Sahuquillo A, Capilla JE (1997) Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data. 1. Theory. J Hydrol 204(1–4):162–174

    Google Scholar 

  • Gómez-Hernández JJ, Wen XH (1998) To be or not to be multi-Gaussian? A reflection on stochastic hydrogeology. Adv Water Resour 21(1):47–61

    Google Scholar 

  • Gupta HV, Bastidas LA, Sorooshian S, Shuttleworth WJ, Yang ZL (1999) Parameter estimation of a land surface scheme using multicriteria methods. J Geophys Res-Atmos 104(D16):19491–19503

    Google Scholar 

  • Hadamard J (1902) Sur les problemes aux derivees partielles et leur signification physique. [On the problems about partial derivatives and their physical significance]. Bull Univ Princeton 13:49–52

    Google Scholar 

  • Hannan ES (1980) The estimation of the order of an ARMA process. Ann Stat (8):1071–1081

    Google Scholar 

  • Harrar WG, Sonnenborg TO, Henriksen HJ (2003) Capture zone, travel time, and solute-transport predictions using inverse modeling and different geological models. Hydrogeol J 11(5):536–548

    Google Scholar 

  • Hernandez AF, Neuman SP, Guadagnini A, Carrera J, (2003) Conditioning mean steady state flow on hydraulic head and conductivity through geostatistical inversion. Stochas Env Res Risk Assess 17(5):329–338

    Google Scholar 

  • Hill MC (1990) Relative efficiency of four parameter-estimation methods in steady-state and transient ground-water flow models. In: Gambolati, Rinaldo, Brebbia, Gray, Pinder (eds) Proc Computational Methods in Subsurface Hydrology, International Conference on Computational Methods in Water Resources, pp 103–108

  • Hill MC (1992) A computer program (MODFLOWP) for estimating parameters of a transient, three-dimensional, ground-water flow model using nonlinear regression. U.S. Geological Survey

  • Hill MC (1998) Methods and guidelines for effective model calibration. US geological survey. Water-Resour Investigat Rep 98–4005, 91 pp, Colorado

  • Hill MC, Cooley RL, Pollock DW (1998) A controlled experiment in ground water flow model calibration. Ground Water 36(3):520–535

    Google Scholar 

  • Hoeksema RJ, Kitanidis PK (1984) Comparison of Gaussian conditional mean and kriging estimation in the geostatistical solution to the inverse problem. Water Resour Res 21(6):337–350

    Google Scholar 

  • Hollenbeck KJ, Jensen KH. (1998) Maximum-likelihood estimation of unsaturated hydraulic parameters. J Hydrol 210(1–4):192–205

    Google Scholar 

  • Hu LY (2002) Combination of Dependent Realizations within the gradual deformation method. Math Geol 34(8):953–963

    Google Scholar 

  • Hubbard S, Rubin Y (2000) A review of selected estimation techniques using geophysical data. J Contamin Hydrol 45(2000):3–34

    Google Scholar 

  • Kashyap RL (1982) Optimal choice of AR and MA parts in autoregressive moving average models. IEEE Trans Pattern Anal Mach Intel PAMI 4(2):99–104

    Google Scholar 

  • Kitanidis PK, Vomvoris EG (1983) A geostatistical approach to the inverse problem in groundwater modelling (steady state) and one dimensional simulations. Water Resour Res 19(3):677–690

    Google Scholar 

  • Kitanidis PK (1997) Introduction to geostatistics: applications to hydrogeology. Cambridge University Press, Cambridge, NY

    Google Scholar 

  • Knopman DS, Voss CI (1989) Multiobjective sampling design for parameter-estimation and model discrimination in groundwater solute transport. Water Resour Res 25(10):2245–2258

    Google Scholar 

  • Kool JB, Parker JC, Van Genuchten MT (1987) Parameter estimation for unsaturated flow and transport models. A Review J Hydrol 91:255–293

    Google Scholar 

  • Kool JB, Parker JC (1988) Analysis of the inverse problem for transient unsaturated flow. Water Resour Res 24(6):817–830

    Google Scholar 

  • Kowalsky MB, Finsterle S, Rubin Y (2004) Estimating flow parameter distributions using ground-penetrating radar and hydrological measurements during transient flow in the vadose zone. Adv Water Resour 27:583–599

    Google Scholar 

  • Kunstmann H, Kinzelbach W, Siegfried T (2002) Conditional first-order second-moment method and its application to the quantification of uncertainty in groundwater modeling. Water Resour Res 38(4):Art. No. 1035

    Google Scholar 

  • Larocque M, Banton O, Ackerer P, Razack M (1999) Determining karst transmissivities with inverse modeling and an equivalent porous media. Ground Water 37(6):897–903

    CAS  Google Scholar 

  • Larsson A (1992) The International Projects INTRACOIN, HYDROCOIN and INTRAVAL. Adv Water Resour 15(1):85–87

    Google Scholar 

  • Mantoglou A (2003) Estimation of Heterogeneous Aquifer Parameters from Piezometric Head Data using Ridge Functions and Neural Networks. Stochas Environmen Risk Assess 17:339–352

    Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of non-linear parameters. J Soc Indust Appl Math 11(2)

  • McLaughlin D, Townley LLR (1996) A reassessment of the groundwater inverse problem. Water Resour Res 32(5):1131–1161

    Google Scholar 

  • Medina A, Carrera J (1996) Coupled estimation of flow and solute transport parameters. Water Resour Res 32(10):3063–3076

    Google Scholar 

  • Medina A, Carrera J (2003) Geostatistical inversion of coupled problems: dealing with computational burden and different types of data. J Hydrol 281:251–264

    Google Scholar 

  • Mehl SW, Hill MC (2003) Locally refined block-centered finite-difference groundwater models. In: Kovar K, Zbynek H (eds) Evaluation of parameter sensitivity and the consequences for inverse modelling and predictions. IAHS Publication 277, p. 227–232

  • Meier P, Carrera J, Sanchez-Vila X (1999) A numerical study on the relation between transmissivity and specific capacity in heterogeneous aquifers. Ground Water 37(4):611–617

    CAS  Google Scholar 

  • Meier P, Medina A, Carrera J (2001) Geoestatistical inversion of cross-hole pumping tests for identifyingpreferential flow channels within a shear zone. Ground Water 39(1):10–17

    CAS  Google Scholar 

  • Meixner T, Gupta HV, Bastidas LA, Bales RC (1999) Sensitivity analysis using mass flux and concentration. Hydrol Proc 13(14–15):2233–2244

    Google Scholar 

  • Nelson RW (1960) In place measurement of permeability in heterogeneous media, 1. Theory of a proposed method. J Geophys Res 65(6):1753–1760

    Google Scholar 

  • Nelson RW (1961) In place measurement of permeability in heterogeneous media, 2. Experimental and computational considerations. J Geophys Res 66:2469–2478

    Google Scholar 

  • Neuman SP (1973) Calibration of distributed parameter groundwater flow models viewed as a multiple-objective decision process under uncertainty. Water Resour Res 9(4):1006–1021

    Google Scholar 

  • Neuman SP, Wierenga PJ (2003) A comprehensive strategy of hydrogeologic modeling and uncertainty analysis for nuclear facilities and sites. NU-REG/CR-6805, US Nuclear Regulatory Commision, Washington, DC

    Google Scholar 

  • Poeter EP, Hill MC (1997) Inverse models: A necessary next step in groundwater modeling. Ground Water 35(2):250–260

    Google Scholar 

  • Poeter EP, Hill MC (1998) Documentation of UCODE: a computer code for universal inverse modeling. U.S. Geological Survey Water-Resources Investigations Report 98–4080: 116 pp

  • Ramarao BS, Lavenue AM, de Marsily GH, Marietta MG (1995) Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields, 1. Theory and computational experiments. Water Resour Res 31(3):475–493

    Article  Google Scholar 

  • Rao SVN, Thandaveswara BS, Bhallamudi SM (2003) Optimal groundwater management in deltaic regions using simulated annealing and neural networks. Water Resour Manag 17(6):409–428

    Google Scholar 

  • Rissanen J (1978) Modeling by shortest data description. Automatica 14:465–471

    Article  Google Scholar 

  • Roggero F, Hu LY (1998) Gradual deformation of continuous geostatistical models for history matching. In annual technical conference, SPE 49004

  • Rubin Y (2003) Applied stochastic hydrogeology. Oxford University Press, New York 391 pp

    Google Scholar 

  • Rubin Y, Dagan G (1987) Stochastic Identification of Transmissivity and Effective Recharge in Steady Groundwater-Flow, 1 Theory. Water Resour Res 23(7):1185–1192

    Google Scholar 

  • Rudin M, Beckmann N, Prosas R., Reese T, Bochelen D, Sauter A. (1999) In vivo magnetic resonance methods in pharmaceutical research: current status and perspectives. NMR Biomed 12(2):69–97

    Google Scholar 

  • Rühli FJ, Lanz C, Ulrich-Bochsler S, Alt KW (2002) State-of-the-art imaging in palaeopathology: the value of multislice computed tomography in visualizing doubtful cranial lesions. Int J Osteoarchaeol 12(5):372–379

    Google Scholar 

  • Sahuquillo A, Capilla J, Gómez-Hernández JJ, Andreu J (1992) Conditional simulation of transmissivity fields honouring piezomètrica data. In: Blain WR, Cabrera E Fluid Flow Modeling, Comput. Mech., Billerica, Mass, pp 201–212

    Google Scholar 

  • Sambridge M, Mosegaard K (2002) Monte Carlo methods in geophysical inverse problems. Rev Geophys 40(3):Art. No. 1009

    Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Google Scholar 

  • Stallman RW (1956) Numerical analysis of regional water levels to define aquifer hydrology. Am Geophys Union Trans 37(4):451–460

    Google Scholar 

  • Tihonov AN (1963) Regularization of incorrectly posed problems, Sov. Math Dokl 4:1624–1627

    Google Scholar 

  • Tsai FTC, Sun NZ, Yeh WG (2003) Global-local optimization methods for the identification of threedimensional parameter structure in groundwater modeling. Water Resour Res 39(2) Art:1043

    Article  Google Scholar 

  • Usunoff E, Carrera J, Mousavi SF (1992) An approach to the design of experiments for discriminating among alternative conceptual models. Adv Water Resour 15(3):199–214

    Google Scholar 

  • Varni M, Carrera J (1998) Simulation of groundwater age distribution. Wat Resour Res 34(12):3271–3281

    Google Scholar 

  • Vassolo S, Kinzelbach W, Schafer W (1998) Determination of a well head protection zone by stochastic inverse modelling. J Hydrol 206(3–4):268–280

    Google Scholar 

  • Vecchia AV, Cooley RL (1987) Simultaneous confidence and prediction intervals for nonlinear regression models with application to a groundwater flow model. Water Resour Res 23(7):1237–1250

    Google Scholar 

  • Vesselinov VV, Neuman SP, Illman WA (2001) Three-dimensional numerical inversion of pneumatic cross-hole tests in unsaturated fractured tuff 2. Equivalent parameters, high-resolution stochastic imaging and scale effects. Water Resour Res 37(12):3019–3041

    Article  Google Scholar 

  • Wagner BJ, Gorelick SM (1987) Optimal groundwater quality management under parameter uncertainty. Water Resour Res 23(7):1162–1174

    Google Scholar 

  • Weiss R, Smith L (1998) Efficient and responsible use of prior information in inverse methods. Ground Water 36(1):151–163

    Google Scholar 

  • Weissmann GS, Carle SA, Fogg GE (1999) Three-dimensional hydrofacies modeling based on soil survey analysis and transition probability geostatistics. Water Resour Res 35(6):1761–1770

    Google Scholar 

  • Woodbury AD, Rubin Y (2000) A full-Bayesian approach to parameter inference from tracer travel time moments and investigation of scale effects at the Cape Cod experimental site. Water Resour Res 36(1):159–171

    Google Scholar 

  • Woodbury AD, Smith JL, Dunbar WS (1987) Simultaneous inversion of temperature and hydraulic data, 1. Theory and application using hydraulic head data. Water Resour Res 23(8):1586–1606

    Google Scholar 

  • Xiang Y, Sykes JF, Thomson NR (1992) A composite L1 parameter estimator for model fitting in groundwater flow and solute transport simulation. Water Resour Res 29(6):1661–1673

    Google Scholar 

  • Yapo PO, Gupta HV, Sorooshian S (1998) Multi-objective global optimization method for hydrological models. J Hydrol 204:83–87

    Google Scholar 

  • Yeh TCJ, Liu SY (2000) Hydraulic tomography: Development of a new aquifer test method. Water Resour Res 36(8):2095–2105

    Google Scholar 

  • Yeh WWG, Yoon YS (1981) Aquifer parameter identification with optimum dimension in parameterization. Wat Resour Res 17(3):664–672

    Google Scholar 

  • Yeh WWG (1986) Review of parameter estimation procedures in groundwater hydrology: The inverse problem. Water Resour Res 22:95–108

    Google Scholar 

  • Zimmerman DA, de Marsily G, Gotway CA, Marietta MG, Axness CL, Beauheim RL, Bras RL, Carrera J, Dagan G, Davies PB, Gallegos DP, Galli A, Gómez-Hernández JJ, Grindrod P, Gutjahr AL, Kitanidis PK, Lavenue AM, McLaughlin D, Neuman SP, RamaRao BS, Ravenne C, Rubin Y (1998) A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow. Water Resour Res 34(6):1373–1413

    Google Scholar 

Download references

Acknowledgments

The final manuscript benefitted from comments by Mary Hill, Matt Tonkin and Johan Valstar

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Carrera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrera, J., Alcolea, A., Medina, A. et al. Inverse problem in hydrogeology. Hydrogeol J 13, 206–222 (2005). https://doi.org/10.1007/s10040-004-0404-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-004-0404-7

Keywords

Navigation