Skip to main content
Log in

Carbon Dioxide and Methane Fluxes From Tree Stems, Coarse Woody Debris, and Soils in an Upland Temperate Forest

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Forest soils and canopies are major components of ecosystem CO2 and CH4 fluxes. In contrast, less is known about coarse woody debris and living tree stems, both of which function as active surfaces for CO2 and CH4 fluxes. We measured CO2 and CH4 fluxes from soils, coarse woody debris, and tree stems over the growing season in an upland temperate forest. Soils were CO2 sources (4.58 ± 2.46 µmol m−2 s−1, mean ± 1 SD) and net sinks of CH4 (−2.17 ± 1.60 nmol m−2 s−1). Coarse woody debris was a CO2 source (4.23 ± 3.42 µmol m−2 s−1) and net CH4 sink, but with large uncertainty (−0.27 ± 1.04 nmol m−2 s−1) and with substantial differences depending on wood decay status. Stems were CO2 sources (1.93 ± 1.63 µmol m−2 s−1), but also net CH4 sources (up to 0.98 nmol m−2 s−1), with a mean of 0.11 ± 0.21 nmol m−2 s−1 and significant differences depending on tree species. Stems of N. sylvatica, F. grandifolia, and L. tulipifera consistently emitted CH4, whereas stems of A. rubrum, B. lenta, and Q. spp. were intermittent sources. Coarse woody debris and stems accounted for 35% of total measured CO2 fluxes, whereas CH4 emissions from living stems offset net soil and CWD CH4 uptake by 3.5%. Our results demonstrate the importance of CH4 emissions from living stems in upland forests and the need to consider multiple forest components to understand and interpret ecosystem CO2 and CH4 dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ambus P, Christensen S. 1995. Spatial and seasonal nitrous oxide and methane fluxes in Danish forest-, grassland-, and agroecosystems. J Environ Qual 24:993.

    Article  CAS  Google Scholar 

  • Amthor JS. 1984. The role of maintenance respiration in plant growth. Plant Cell Environ 7:561–9.

    Google Scholar 

  • Atkins JW, Epstein HE, Welsch DL. 2014. Vegetation heterogeneity and landscape position exert strong controls on soil CO2 efflux in a moist, Appalachian watershed. Biogeosciences 11:17631–73.

    Article  Google Scholar 

  • Butenhoff CL, Khalil MAK. 2007. Global methane emissions from terrestrial plants. Environ Sci Technol 41:4032–7.

    Article  CAS  PubMed  Google Scholar 

  • Carmichael MJ, Bernhardt ES, Bräuer SL, Smith WK. 2014. The role of vegetation in methane flux to the atmosphere: should vegetation be included as a distinct category in the global methane budget? Biogeochemistry 119:1–24.

    Article  CAS  Google Scholar 

  • Ceschia É, Damesin C, Lebaube S, Pontailler JY, Dufrêne É. 2002. Spatial and seasonal variations in stem respiration of beech trees (Fagus sylvatica). Ann For Sci 59:801–12.

    Article  Google Scholar 

  • Covey KR, Wood SA, Warren RJ, Lee X, Bradford MA. 2012. Elevated methane concentrations in trees of an upland forest. Geophys Res Lett 39:L15705. doi:10.1029/2012GL052361.

    Article  Google Scholar 

  • Creed IF, Webster KL, Braun GL, Bourbonnière RA, Beall FD. 2013. Topographically regulated traps of dissolved organic carbon create hotspots of soil carbon dioxide efflux in forests. Biogeochemistry 112:149–64. doi:10.1007/s10533-012-9713-4.

    Article  CAS  Google Scholar 

  • Crill PM. 1991. Seasonal patterns of methane uptake and carbon dioxide release by a temperate woodland soil. Global Biogeochem Cycles 5:319–34.

    Article  CAS  Google Scholar 

  • Davidson EA, Belk E, Boone RD. 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biol 4:217–27. doi:10.1046/j.1365-2486.1998.00128.x.

    Article  Google Scholar 

  • Delaware Environmental Observing System (DEOS). 2014. Newark, DE: University of Delaware.

  • Del Grosso SJ, Parton WJ, Mosier AR, Ojima DS, Potter CS, Brumme R, Crill PM, Dobbie K, Smith KA. 2000. General CH4 oxidation model and comparisons of CH4 oxidation in natural and managed systems. Global Biogeochem Cycles 14:999–1019.

    Article  Google Scholar 

  • Dlugokencky EJ, Nisbet EG, Fisher R, Lowry D. 2011. Global atmospheric methane: budget, changes and dangers. Philos Trans Ser A Math Phys Eng Sci 369:2058–72.

    Article  CAS  Google Scholar 

  • Edwards NT, Hanson PJ. 1996. Stem respiration in a closed-canopy upland oak forest. Tree Physiol 16:433–9. http://treephys.oxfordjournals.org/content/16/4/433.abstract

  • Edwards NT, Mclaughlin SB. 1978. Temperature-independent diel variations of respiration rates in Quercus alba and Liriodendron tulipifera. Oikos 31:200–6.

    Article  Google Scholar 

  • Eklund L. 2000. Internal oxygen levels decrease during the growing season and with increasing stem height. Trees 14:177–80. doi:10.1007/PL00009761.

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey D, Haywood J, Lean J, Lowe D, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R. 2007. Changes in atmospheric constituents and in radiative forcing. In: Nakajima T, Ramanathan V, editors. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 129–234. http://en.scientificcommons.org/23467316

  • Fukami T, Dickie IA, Paula Wilkie J, Paulus BC, Park D, Roberts A, Buchanan PK, Allen RB. 2010. Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol Lett 13:675–84.

    Article  PubMed  Google Scholar 

  • Gough CM, Vogel CS, Kazanski C, Nagel L, Flower CE, Curtis PS. 2007. Coarse woody debris and the carbon balance of a north temperate forest. For Ecol Manag 244:60–7.

    Article  Google Scholar 

  • Hanson PJ, Wullschleger SD, Bohlman SA, Todd DE. 1993. Seasonal and topographic patterns of forest floor CO2 efflux from an upland oak forest. Tree Physiol 13:1–15. doi:10.1093/treephys/13.1.1.

    Article  CAS  PubMed  Google Scholar 

  • Harmon M, Franklin J, Swanson F, Sollins P, Gregory S, Lattin J, Anderson N, Cline S, Aumen N, Sedell J, Lienkaemper G, Cromack K, Cummins K. 1986. Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–302. doi:10.1016/S0065-2504(03)34002-4.

    Article  Google Scholar 

  • Harmon ME, Bond-Lamberty B, Tang J, Vargas R. 2011. Heterotrophic respiration in disturbed forests: a review with examples from North America. J Geophys Res Biogeosci 116:1–17.

    Article  Google Scholar 

  • Inamdar S, Finger N, Singh S, Mitchell M, Levia D, Bais H, Scott D, McHale P. 2011. Dissolved organic matter (DOM) concentration and quality in a forested mid-Atlantic watershed, USA. Biogeochemistry 108:55–76. doi:10.1007/s10533-011-9572-4.

    Article  Google Scholar 

  • Keppler F, Hamilton JTG, McRoberts WC, Vigano I, Braß M, Röckmann T. 2008. Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labelling studies. New Phytol 178:808–14.

    Article  CAS  PubMed  Google Scholar 

  • Lenhart K, Bunge M, Ratering S, Neu TR, Schüttmann I, Greule M, Kammann C, Schnell S, Müller C, Zorn H, Keppler F. 2012. Evidence for methane production by saprotrophic fungi. Nat Commun 3:1046.

    Article  PubMed  Google Scholar 

  • Lloyd J, Taylor JA. 1994. On the temperature dependence of soil respiration. Funct Ecol 8:315–23. http://www.jstor.org/stable/2389824?origin=crossref. Last accessed 30/10/2014

  • Mosier AR, Parton WJ, Valentine DW, Schimel DS. 1996. CH4 and N2O fluxes in the Colorado shortgrass steppe: 1. Impact of landscape and nitrogen addition. Global Biogeochem Cycles 10:387–99.

    Article  CAS  Google Scholar 

  • Mukhin VA, Voronin PY. 2008. A new source of methane in boreal forests. Prikladnaia biokhimiia i mikrobiologiia 44:330–2.

    CAS  PubMed  Google Scholar 

  • Mukhin VA, Voronin PY. 2011. Methane emission from living tree wood. Russ J Plant Physiol 58:344–50. doi:10.1134/S1021443711020117.

    Article  CAS  Google Scholar 

  • Neubauer SC, Megonigal JP. 2015. Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18:1000–13. doi:10.1007/s10021-015-9879-4.

    Article  Google Scholar 

  • Ngao J, Epron D, Delpierre N, Bréda N, Granier A, Longdoz B. 2012. Spatial variability of soil CO2 efflux linked to soil parameters and ecosystem characteristics in a temperate beech forest. Agric For Meteorol 154–155:136–46.

    Article  Google Scholar 

  • Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church J a., Clarke L, Dahe Q, Dasgupta P, Dubash NK, Edenhofer O, Elgizouli I, Field CB, Forster P, Friedlingstein P, Fuglestvedt J, Gomez-Echeverri L, Hallegatte S, Hegerl G, Howden M, Jiang K, Cisneros BJ, Kattsov V, Lee H, Mach KJ, Marotzke J, Mastrandrea MD, Meyer L, Minx J, Mulugetta Y, O’Brien K, Oppenheimer M, Pereira JJ, Pichs-Madruga R, Plattner G-K, Pörtner H-O, Power SB, Preston B, Ravindranath NH, Reisinger A, Riahi K, Rusticucci M, Scholes R, Seyboth K, Sokona Y, Stavins R, Stocker TF, Tschakert P, Vuuren D Van, Ypersele J-P Van. 2014. IPCC climate change 2014: synthesis report.

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D. 2011. A large and persistent carbon sink in the world’s forests. Science 333:988–93. doi:10.1126/science.1201609.

    Article  CAS  PubMed  Google Scholar 

  • Pangala SR, Moore S, Hornibrook ERC, Gauci V. 2013. Trees are major conduits for methane egress from tropical forested wetlands. New Phytol 197:524–31.

    Article  PubMed  Google Scholar 

  • Pearson AJ, Pizzuto JE, Vargas R. 2016. Influence of run of river dams on floodplain sediments and carbon dynamics. Geoderma 272:51–63.

    Article  CAS  Google Scholar 

  • Pumpanen J, Kolari P, Ilvesniemi H, Minkkinen K, Vesala T, Niinistö S, Lohila A, Larmola T, Morero M, Pihlatie M, Janssens I, Yuste JC, Grünzweig JM, Reth S, Subke JA, Savage K, Kutsch W, Østreng G, Ziegler W, Anthoni P, Lindroth A, Hari P. 2004. Comparison of different chamber techniques for measuring soil CO2 efflux. Agric For Meteorol 123:159–76.

    Article  Google Scholar 

  • R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://R-project.org.

  • Raich JW, Potter CS. 1995. Global patterns of carbon dioxide emissions from soils. Global Biogeochem Cycles 9:23–36. doi:10.1029/94GB02723.

    Article  CAS  Google Scholar 

  • Rice AL, Butenhoff CL, Shearer MJ, Teama D, Rosenstiel TN, Khalil MAK. 2010. Emissions of anaerobically produced methane by trees. Geophys Res Lett 37:1–6.

    Article  Google Scholar 

  • Rodhe H. 1990. A comparison of the contribution of various gases to the greenhouse effect. Science 248:1217–9. http://www.ncbi.nlm.nih.gov/pubmed/17809907. Last accessed 21 Dec 2014

  • Russell MB, Woodall CW, Fraver S, D’Amato AW, Domke GM, Skog KE. 2014. Residence times and decay rates of downed woody debris biomass/carbon in eastern US forests. Ecosystems 17:765–77. doi:10.1007/s10021-014-9757-5.

    Article  CAS  Google Scholar 

  • Ryan MG, Cavaleri MA, Almeida AC, Penchel R, Senock RS, Luiz Stape J. 2009. Wood CO2 efflux and foliar respiration for Eucalyptus in Hawaii and Brazil. Tree Physiol 29:1213–22.

    Article  CAS  PubMed  Google Scholar 

  • Scheffer TC. 1966. Natural resistance of wood to microbial deterioration. Annu Rev Phytopathol 4:147–68.

    Article  CAS  Google Scholar 

  • Smith KA, Dobbie KE, Ball BC, Bakken LR, Sitaula BK, Hansen S, Brumme R, Borken W, Christensen S, Priemé A, Fowler D, Macdonald JA, Skiba U, Klemedtsson L, Kasimir-Klemedtsson A, Degórska A, Orlanski P. 2000. Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink. Global Change Biol 6:791–803.

    Article  Google Scholar 

  • Steudler PA, Bowden RD, Melillo JM, Aber JD. 1989. Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature 341:314–16. doi:10.1038/341314a0.

    Article  Google Scholar 

  • Tarvainen L, Räntfors M, Wallin G. 2014. Vertical gradients and seasonal variation in stem CO2 efflux within a Norway spruce stand. Tree Physiol 34:488–502.

    Article  CAS  PubMed  Google Scholar 

  • Terazawa K, Ishizuka S, Sakata T, Yamada K, Takahashi M. 2007. Methane emissions from stems of Fraxinus mandshurica var. japonica trees in a floodplain forest. Soil Biol Biochem 39:2689–92.

    Article  CAS  Google Scholar 

  • Terazawa K, Yamada K, Ohno Y, Sakata T, Ishizuka S. 2015. Spatial and temporal variability in methane emissions from tree stems of Fraxinus mandshurica in a cool-temperate floodplain forest. Biogeochemistry 123:349–62.

    Article  CAS  Google Scholar 

  • Teskey RO, Saveyn A, Steppe K, McGuire MA. 2008. Origin, fate and significance of CO2 in tree stems. New Phytol 177:17–32.

    CAS  PubMed  Google Scholar 

  • Vigano I, van Weelden H, Holzinger R, Keppler F, Röckmann T. 2008. Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components. Biogeosciences 5:243–70.

    Article  Google Scholar 

  • Vito M, Muggeo R. 2008. Segmented: an R package to fit regression models with broken-line relationships. R News 8(1):20–5.

    Google Scholar 

  • Wang ZP, Gu Q, Deng FD, Huang JH, Megonigal JP, Yu Q, Lü XT, Li LH, Chang S, Zhang YH, Feng JC, Han XG. 2016. Methane emissions from the trunks of living trees on upland soils. New Phytol 211:429–39. doi:10.1111/nph.13909.

    Article  CAS  PubMed  Google Scholar 

  • Webster KL, Creed IF, Bourbonnière RA, Beall FD. 2008. Controls on the heterogeneity of soil respiration in a tolerant hardwood forest. J Geophys Res 113:G03018. doi:10.1029/2008JG000706.

    Google Scholar 

  • Zeikus JG, Ward JC. 1974. Methane formation in living trees: a microbial origin. Science 184:1181–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the US Department of Agriculture (USDA-AFRI Grant 2013-02758) and State of Delaware’s Federal Research and Development Matching Grant Program. RV and KM acknowledge support from the Delaware Water Research Center. We thank Zulia Sanchez, Jillian Swank, the UD Soil Testing Facility, and the Delaware Environmental Observation System for field and laboratory support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Vargas.

Additional information

Author contributions DLW and RV conceived and designed study; DLW, SV, KM, and RV performed research; DLW analyzed data; and DLW, SI and RV wrote the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warner, D.L., Villarreal, S., McWilliams, K. et al. Carbon Dioxide and Methane Fluxes From Tree Stems, Coarse Woody Debris, and Soils in an Upland Temperate Forest. Ecosystems 20, 1205–1216 (2017). https://doi.org/10.1007/s10021-016-0106-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-016-0106-8

Keywords

Navigation