Skip to main content

Advertisement

Log in

Woody Plant-Cover Dynamics in Argentine Savannas from the 1880s to 2000s: The Interplay of Encroachment and Agriculture Conversion at Varying Scales

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Woody plant-cover dynamics can alter the provisioning of ecosystem services that humans rely on. However, our understanding of such dynamics today is often limited by the availability of reliable and detailed land-cover information in the past, before the onset of remote sensing technologies. In this study, we carefully extracted information from historical maps of the Caldenal savannas of central Argentina in the 1880s to generate a woody cover map that we compared to a 2000s dataset. Over about the last 120 years, woody cover increased across approximately 12,200 km2 (14.2% of the area). During the same period, about 5,000 km2 of the original woody area was converted to croplands and around 7,000 km2 to pastures, about the same total land area as was affected by encroachment. A smaller area, fine-scale analysis between the 1960s and the 2000s revealed that tree cover increased overall by 27%, shifting from open savannas to a mosaic of dense woodlands along with additional agricultural clearings. Statistical models indicate that woody cover dynamics in this region were affected by a combination of environmental and human factors. Over about the last 120 years, increases in woody plant cover have stored significant amounts of C (95.9 TgC), but not enough to compensate for losses from conversions to croplands and pastures (166.7 TgC), generating a regional net loss of 70.9 TgC. C losses could be even larger in the future if, as predicted, energy crops such as switchgrass, would trigger a new land-cover change phase in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Alonso AF. 2009. En el pais de los caldenes: Incorporación productiva y expansión económica en La Pampa. Huellas 13:204–36.

    Google Scholar 

  • Andersen MD, Baker WL. 2005. Reconstructing landscape-scale tree invasion using survey notes in the Medicine Bow Mountains, Wyoming, USA. Landsc Ecol 21:243–58.

    Article  Google Scholar 

  • Antrop M. 2005. Why landscapes of the past are important for the future. Landsc Urban Plan 70:21–34.

    Article  Google Scholar 

  • Asner GP, Elmore AJ, Olander LP, Martin RE, Harris AT. 2004. Grazing systems, ecosystem responses, and global change. Annu Rev Environ Resour 29:261–99.

    Article  Google Scholar 

  • Bailey RG. 1996. Ecosystem geography. New York: Springer.

    Book  Google Scholar 

  • Baldi G, Paruelo JM. 2008. Land-use and land cover dynamics in South American temperate grasslands. Ecol Soc 13(2):6.

    Google Scholar 

  • Ballantyne AP, Alden CB, Miller JB, Tans PP, White JWC. 2012. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488:70.

    Article  CAS  PubMed  Google Scholar 

  • Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Roedenbeck C, Arain MA, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward FI, Papale D. 2010. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329:834–8.

    Article  CAS  PubMed  Google Scholar 

  • Beltran-Przekurat A, Pielke RA, Peters DPC, Snyder KA, Rango A. 2008. Modeling the effects of historical vegetation change on near-surface atmosphere in the northern Chihuahuan Desert. J Arid Environ 72:1897–910.

    Article  Google Scholar 

  • Bender O, Boehmer HJ, Jens D, Schumacher KP. 2005. Analysis of land-use change in a sector of Upper Franconia (Bavaria, Germany) since 1850 using land register records. Landsc Ecol 20:149–63.

    Article  Google Scholar 

  • Blaum N, Rossmanith E, Jeltsch F. 2007. Land use affects rodent communities in Kalahari savannah rangelands. Afr J Ecol 45:189–95.

    Article  Google Scholar 

  • Browning DM, Archer SR, Asner GP, McClaran MP, Wessman CA. 2008. Woody plants in grasslands: Post-encroachment stand dynamics. Ecol Appl 18:928–44.

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR. 2002. Model selection and multimodel inference, A practical information theoretic approach. New York: Springer-Verlag.

    Google Scholar 

  • Cabrera AL. 1994. Enciclopedia Argentina de agricultura y jardinería, Tomo II, Fascículo 1: Regiones fitogeográficas Argentinas. Buenos Aires: Acme.

    Google Scholar 

  • Cano E, Fernández B, Montes A. 1980. Inventario integrado de los recursos naturales de la provincia de La Pampa. Buenos Aires: UNLPam, Gobierno de La Pampa e INTA.

    Google Scholar 

  • CIESIN. 2011. Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Settlement Points. NY: Palisades.

    Google Scholar 

  • del Hoyo LV, Martin Isabel MP, Martinez Vega FJ. 2011. Logistic regression models for human-caused wildfire risk estimation: analysing the effect of the spatial accuracy in fire occurrence data. Eur J For Res 130:983–96.

    Article  Google Scholar 

  • Diogo V, van der Hilst F, van Eijck J, Verstegen JA, Hilbert J, Carballo S, Volante J, Faaij A. 2014. Combining empirical and theory-based land-use modelling approaches to assess economic potential of biofuel production avoiding iLUC: Argentina as a case study. Renew Sustain Energy Rev 34:208–24.

    Article  Google Scholar 

  • Don A, Schumacher J, Freibauer A. 2011. Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis. Glob Change Biol 17:1658–70.

    Article  Google Scholar 

  • DPV. 2012. Mapa actualizado 2012 de la red caminera de la provincia de La Pampa.

  • Dussart E, Lerner P, Peinetti R. 1998. Long term dynamics of 2 populations of Prosopis caldenia Burkart. J Range Manag 51:685–91.

    Article  Google Scholar 

  • Eldridge DJ, Bowker MA, Maestre FT, Roger E, Reynolds JF, Whitford WG. 2011. Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecol Lett 14:709–22.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fan Y, Li H, Miguez-Macho G. 2013. Global patterns of groundwater table depth. Science 339:940–3.

    Article  CAS  PubMed  Google Scholar 

  • Fawcett T. 2006. An introduction to ROC analysis. Pattern Recogn Lett 27:861–74.

    Article  Google Scholar 

  • Fielding AH, Bell JF. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49.

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK. 2005. Global consequences of land use. Science 309:570–4.

    Article  CAS  PubMed  Google Scholar 

  • González-Roglich M, Swenson JJ, Jobbagy E, Jackson RB. 2014. Shifting carbon pools along a plant cover gradient in woody encroached savannas of central Argentina. For Ecol and Manag 331:71–8.

    Article  Google Scholar 

  • González-Roglich M, Villarreal D, Castro MG. 2012. Evaluación de la efectividad de la Reserva Parque Luro como herramienta de conservación del Caldenal pampeano: cambios en la cobertura vegetal a nivel de paisaje entre 1960 y 2004. Ecol Aust 22:11–21.

    Google Scholar 

  • Gordijn PJ, Rice E, Ward D. 2013. The effects of fire on woody plant encroachment are exacerbated by succession of trees of decreased palatability. S Afr J Bot 86:142.

    Article  Google Scholar 

  • Grueber CE, Nakagawa S, Laws RJ, Jamieson IG. 2011. Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez D, Harcourt J, Diez SB, Illan JG, Wilson RJ. 2013. Models of presence-absence estimate abundance as well as (or even better than) models of abundance: the case of the butterfly Parnassius apollo. Landsc Ecol 28:401–13.

    Article  Google Scholar 

  • Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M. 2007. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc Natl Acad Sci USA 104:12942–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–78.

    Article  Google Scholar 

  • Hosmer DW, Lemeshow S, Sturdivant RX. 2013. Applied logistic regression. Hoboken: Wiley.

    Google Scholar 

  • Houghton RA. 2013. The emissions of carbon from deforestation and degradation in the tropics: past trends and future potential. Carbon Manag 4:539–46.

    Article  CAS  Google Scholar 

  • IGN. 2013. SIG250: Base cartografica digital de la Republica Argentina. Buenos Aires: Instituto Geografico Nacional.

    Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E. 2008. Hole filled SRTM for the globe version 4, available from CGIAR-CSI SRTM 90m Database.

  • Jenness J. 2006. Topographic Position and Landforms Analysis.

  • Kim JH, Jackson RB. 2011. A global analysis of groundwater recharge for vegetation, climate and soils. Vadose Zone J. doi:10.2136/vzj2011.

    Google Scholar 

  • Lerner PD. 2004. El Caldenar: Dinámica de poblaciones de caldén y procesos de expansión de leñosas en pastizales. Arturi MF, Frangi JL, Goya JF editors. Ecologia y manejo de bosques de Argentina.

  • Li RQ, Dong M, Cui JY, Zhang LL, Cui QG, He WM. 2007. Quantification of the impact of land-use changes on ecosystem services: A case study in Pingbian County, China. Environ Monit Assess 128:503–10.

    Article  PubMed  Google Scholar 

  • Liu F, Archer SR, Gelwick F, Bai E, Boutton TW, Wu XB. 2013. Woody plant encroachment into grasslands: spatial patterns of functional group distribution and community development. Plos One 8(12):e84364.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lluch AM. 2008. La economía desde la ocupación capitalista a la crisis del ´30 y los años posteriores. Lluch AM, Salomon Tarquini CC editors. Historia de La Pampa, sociedad, politica, economia, desde los poblamientos originales hasta la provincializacion: ca 8000 AP a 1952. Santa Rosa, La Pampa: Universidad Nacional de La Pampa.

  • Lunt ID, Winsemius LM, McDonald SP, Morgan JW, Dehaan RL. 2010. How widespread is woody plant encroachment in temperate Australia? Changes in woody vegetation cover in lowland woodland and coastal ecosystems in Victoria from 1989 to 2005. J Biogeogr 37:722–32.

    Article  Google Scholar 

  • Marcucci DJ. 2000. Landscape history as a planning tool. Landsc Urban Plan 49:67–81.

    Article  Google Scholar 

  • McCulley RL, Jackson RB. 2012. Conversion of tallgrass prairie to woodland: Consequences for carbon and nitrogen cycling. Am Midl Nat 167:307–21.

    Article  Google Scholar 

  • McGarigal K, Cushman SA, Ene E. 2012. FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Amherst: University of Massachusetts.

    Google Scholar 

  • Medina AA. 2007. Reconstrucción de los regímenes de fuego en un bosque de Prosopis caldenia, provincia de La Pampa, Argentina. Bosque 28:234–40.

    Article  Google Scholar 

  • Mendez JL. 2007a. Primer inventario nacional de bosques nativos: Inventario de campo de la región del Espinal. Buenos Aires: Dirección Nacional de Bosques. p p236.

    Google Scholar 

  • Mendez JL. 2007b. Primer inventario nacional de bosques nativos: Inventario de campo de la región del espinal—Anexo 1: Estado de conservación del Caldenal. Buenos Aires: Dirección nacional de bosques. p 86p.

    Google Scholar 

  • Mendez JL. 2007c. Primer inventario nacional de bosques nativos: Inventario de campo de la región del Espinal—Manual de teledetección. Buenos Aires: Dirección Nacional de Bosques. p p145.

    Google Scholar 

  • Munson SM, Muldavin EH, Belnap J, Peters DPC, Anderson JP, Reiser MH, Melgoza-Castillo A, Herrick JE, Christiansen TA. 2013. Regional signatures of plant response to drought and elevated temperature across a desert ecosystem. Ecology 94:2030–41.

    Article  PubMed  Google Scholar 

  • Nosetto M, Jobbagy E, Brizuela AB, Jackson RB. 2012. The hydrologic consequences of land cover change in central Argentina. Agric Ecosyst Environ 154:2–11.

    Article  Google Scholar 

  • O’Neill RV, Krummel JR, Gardner RH, Sugihara G, Jackson B, DeAngelis DL, Milne BT, Turner MG, Zygmunt B, Christensen SW, Dale VH, Graham RL. 1988. Indices of landscape pattern. Landsc Ecol 1:153–62.

    Article  Google Scholar 

  • R Core Team. 2013. R: A language and environment for statistical computing. Austria: R Foundation for Statistical Computing V.

    Google Scholar 

  • Ramankutty N, Foley JA. 1999. Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob Biogeochem Cycles 13:997–1027.

    Article  CAS  Google Scholar 

  • Ramos M, Bognanni F, Helfer V. 2009. Un estudio integral acerca del movimiento de ganado cimarron a escala interregional entre los siglos XVII y XIX. Revista de Arquilogia Americana 26:257–90.

    Google Scholar 

  • Sokal RR, Rohlf FJ. 1994. Biometry: The principles and practice of statistics in biological research. New York: W.H. Freeman.

    Google Scholar 

  • Soriano A, Leon RJC, Sala OE, Lavado RS, Deregibus VA, Cahuepe MA, Scaglia OA, Velazquez CA, Lemcoff JH. 1991. Rio de la Plata grasslands. In: Coupland RT, Ed. Ecosystems of the World 8A. New York: Elsevier. p 367–407.

    Google Scholar 

  • Swenson JJ, Franklin J. 2000. The effects of future urban development on habitat fragmentation in the Santa Monica Mountains. Landsc Ecol 15:713–30.

    Article  Google Scholar 

  • Tripaldi A, Zarate MA, Forman SL, Badger T, Ciccioli P. 2013. Geological evidence for a drought episode in the western Pampas (Argentina, South America) during the early–mid 20th century. Holocene 23(12):1731–46.

    Article  Google Scholar 

  • Yang YY, Zhang SW, Yang JC, Chang LP, Bu K, Xing XS. 2014. A review of historical reconstruction methods of land use/land cover. J Geogr Sci 24:746–66.

    Article  Google Scholar 

  • Zach A, Tiessen H, Noellemeyer E. 2006. Carbon turnover and carbon-13 natural abundance under land use change in semiarid savanna soils of La Pampa, Argentina. Soil Sci Soc Am J 70:1541–6.

    Article  CAS  Google Scholar 

  • Zink M. 2008. El poblamiento inicial de La Pampa según los principales sitios arqueológicos. In: Lluch AM, Salomon Tarquini CC, Eds. Historia de La Pampa, sociedad, politica, economia, desde los poblamientos originales hasta la provincializacion: ca 8000 AP a 1952. Santa Rosa: Universidad Nacional de La Pampa.

    Google Scholar 

  • Zink M, Salomon Tarquini CC. 2008. Las sociedades indígenas y las relaciones sociales en espacios de frontera. In: Lluch AM, Salomon Tarquini CC, Eds. Historia de La Pampa, sociedad, politica, economia, desde los poblamientos originales hasta la provincializacion: ca 8000 AP a 1952. Santa Rosa: Universidad Nacional de La Pampa.

    Google Scholar 

  • Zomer RJ, Trabucco A, Bossio DA, van Straaten O, Verchot LV. 2008. Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric Ecosyst Environ 126:67–80.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank R. Gardón, F. González Mazzoni, V. Sirotiuk, and J. Uribe Echevarría for digitizing the 1880s data set. M. Cock, M. Betelu, and M. G. Castro assisted during data collection. The manuscript was greatly improved by the careful evaluation by two anonymous reviewers. The Dirección General de Catastro and Dirección de Recursos Naturales de la Provincia de La Pampa provided access to the maps and aerial photos. INPE provided CBERS images. Funding was provided by NASA Earth and Space Science Fellowship (NNX10AO68H), NSF DDRI Grant (1130996), Duke CLACS Tinker Field Research Grant, Duke CLACS Mellon Graduate Student Research Travel Grant, and a research grant from the Ministerio de la Producción del Gobierno de la Provincia de La Pampa (Argentina) through the Ley Nacional 26.331 de Presupuestos mínimos de conservación de los bosques nativos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano González-Roglich.

Additional information

Author contributions: M. González-Roglich conceived and designed the study, performed research, analyzed data and wrote the paper. J.J. Swenson, D. Villarreal, E.G. Jobbágy, and R.B. Jackson contributed new methods and contributed to writing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Roglich, M., Swenson, J.J., Villarreal, D. et al. Woody Plant-Cover Dynamics in Argentine Savannas from the 1880s to 2000s: The Interplay of Encroachment and Agriculture Conversion at Varying Scales. Ecosystems 18, 481–492 (2015). https://doi.org/10.1007/s10021-015-9841-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-015-9841-5

Keywords

Navigation