Skip to main content

Advertisement

Log in

Nitrogen Isotope Patterns in Alaskan Black Spruce Reflect Organic Nitrogen Sources and the Activity of Ectomycorrhizal Fungi

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Global patterns in soil, plant, and fungal stable isotopes of N (δ15N) show promise as integrated metrics of N cycling, particularly the activity of ectomycorrhizal (ECM) fungi. At small spatial scales, however, it remains difficult to differentiate the underlying causes of plant δ15N variability and this limits the application of such measurements to better understand N cycling. We conducted a landscape-scale analysis of δ15N values from 31 putatively N-limited monospecific black spruce (Picea mariana) stands in central Alaska to assess the two main hypothesized sources of plant δ15N variation: differing sources and ECM fractionation. We found roughly 20% of the variability in black spruce foliar N and δ15N values to be correlated with the concentration and δ15N values of soil NH4 + and dissolved organic N (DON) pools, respectively. However, 15N-based mixing models from 24 of the stands suggested that fractionation by ECM fungi obscures the 15N signature of soil N pools. Models, regressions, and N abundance data all suggested that increasing dependence on soil DON to meet black spruce growth demands predicates increasing reliance on ECM-derived N and that black spruce, on average, received 53% of its N from ECM fungi. Future research should partition the δ15N values within the soil DON pool to determine how choice of soil δ15N values influence modeled ECM activity. The C balance of boreal forests is tightly linked to N cycling and δ15N values may be useful metrics of changes to these connections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abuzinadah RA, Read DJ. 1986. The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. III. Protein utilisation by Betula, Picea and Pinus in mycorrhizal association with Hebeloma crustuliniforme. New Phyt 130:507–14.

    Article  Google Scholar 

  • Abuzinadah RA, Read DJ. 1988. Amino acids as nitrogen sources for ectomycorrhizal fungi: utilisation of individual amino acids. Trans Br Mycol Soc 91:473–9.

    Article  CAS  Google Scholar 

  • Allison SD, Hanson CA, Treseder KK. 2007. Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biol Biochem 39:1878–87.

    Article  CAS  Google Scholar 

  • Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT. 2003. Global patterns of the isotopic composition of soil and plant nitrogen. Glob Biogeochem Cycles 17:31.

    Article  CAS  Google Scholar 

  • Andersen DR. 2008. Model based inference in the life sciences: a primer on evidence. New York, NY: Springer.

    Book  Google Scholar 

  • Averill C, Finzi A. 2011. Increasing plant use of organic nitrogen with elevation is reflected in nitrogen uptake rates and ecosystem δ15N. Ecology 92:883–91.

    Article  PubMed  Google Scholar 

  • Bååth E, Nilsson LO, Goransson H, Wallander H. 2004. Can the extent of degradation of soil fungal mycelium during soil incubations be used to estimate ectomycorrhizal biomass in soil? Soil Biol Biochem 36:2105–9.

    Article  CAS  Google Scholar 

  • Binkley D, Son Y, Valentine DW. 2000. Do forests receive occult inputs of nitrogen? Ecosystems 3:321–31.

    Article  CAS  Google Scholar 

  • Bödeker ITM, Nygren CMR, Taylor AFS, Olson A, Lindahl BD. 2009. ClassII peroxidase-encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi. ISME J 3:1387–95.

    Article  PubMed  CAS  Google Scholar 

  • Boeckx P, Paulino L, Oyarzun C, Van Cleemput O, Godoy R. 2005. Soil delta 15N patterns in old-growth forests of southern Chile as integrator for N-cycling. Isot Environ Health Stud 41:249–59.

    Article  CAS  Google Scholar 

  • Bol R, Ostle NJ, Petzke KJ, Chenu C, Balesdent J. 2008. Amino acid 15N in long-term bare fallow soils: influence of annual N fertilizer and manure applications. Eur J Soil Sci 59:617–29.

    Article  CAS  Google Scholar 

  • Bowman WD. 1994. Accumulation and use of nitrogen and phosphorus following fertilization in two alpine tundra communities. Oikos 70:261–70.

    Article  Google Scholar 

  • Burnham KP, Anderson DR. 2004. Multimodel inference. Soc Meth Res 33:261–304.

    Article  Google Scholar 

  • Cabrera ML, Beare MH. 1993. Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. Soil Sci Soc Am J 57:1007–12.

    Article  CAS  Google Scholar 

  • Cambui CA, Svennerstam H, Gruffman L, Nordin A, Ganeteg U, Näsholm T. 2011. Patterns of plant biomass partitioning depend on nitrogen source. PLOS One 6:ee19211.

    Article  CAS  Google Scholar 

  • Chalot M, Javelle A, Blaudez D, Lambilliote R, Cooke R, Sentenac H, Wipf D, Botton B. 2002. An update on nutrient transport processes in ectomycorrhizas. Plant Soil 244:165–75.

    Article  CAS  Google Scholar 

  • Chapin FS, Kedrowski RA. 1983. Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology 64:376–91.

    Article  CAS  Google Scholar 

  • Chapin FS, Hollingsworth TN, Murray DF, Viereck LA, Walker MD. 2006. Floristic diversity and vegetation distribution in the Alaskan boreal forest. In: Chapin FS, Oswood MW, Van Cleve K, Viereck LA, Verbyla DL, Eds. Alaska’s changing boreal forest. New York, NY: Oxford University Press

  • Clemmensen KE, Michelsen A, Jonasson S, Shaver G. 2006. Increased ectomycorrhizal fungal abundance after long-term fertilization and warming of two arctic tundra ecosystems. New Phyt 171:391–404.

    Article  Google Scholar 

  • Clemmensen KE, Sorensen PL, Michelsen A, Jonasson S, Strom L. 2008. Site-dependent N uptake from N-form mixtures by arctic plants, soil microbes and ectomycorrhizla fungi. Oecologia 155:771–83.

    Article  PubMed  Google Scholar 

  • Compton JE, Hooker TD, Perakis SS. 2007. Ecosystem N distribution and δ15N during a century of forest regrowth after agricultural abandonment. Ecosystems 10:1197–208.

    Article  CAS  Google Scholar 

  • Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA, Kahmen A, Mack MC, McLauchlan KK, Michelsen A, Nardoto GB, Pardo LH, Peñuelas J, Reich PB, Schuur EAG, Stock WD, Templer PH, Virginia RA, Welker JM, Wright IJ. 2009. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phyt 183:980–92.

    Article  CAS  Google Scholar 

  • Davidson EA, Reis de Carvalho CJ, Figueira AM, Ishida FY, Ometto JPHB, Nardoto GB, Saba RT, Hayashi SN, Leal EC, Vieira ICG, Martinelli LA. 2007. Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447:995–998.

    Google Scholar 

  • Dijkstra P, Williamson C, Menyailo O, Doucett R, Koch G, Hungate BA. 2003. Nitrogen stable isotope composition of leaves and roots of plants growing in a forest and a meadow. Isot Environ Health Stud 39:29–39.

    Article  CAS  Google Scholar 

  • Doyle A, Weintraub MN, Schimel JP. 2004. Persulfate digestion and simultaneous colorimetric analysis of carbon and nitrogen in soil extracts. Soil Sci Soc Am J 68:669–76.

    Article  CAS  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine, and terrestrial ecosystems. Ecol Lett 10:1135–42.

    Article  PubMed  Google Scholar 

  • Evans RD. 2001. Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci 6:121–6.

    Article  PubMed  CAS  Google Scholar 

  • Frostegård Å, Bååth E. 1996. The use of phospolipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fert Soil 22:59–65.

    Article  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E. 1991. Microbial biomass measured as total lipid phosphate in soils of different organic content. J Microbiol Meth 14:151–63.

    Article  Google Scholar 

  • Frostegård Å, Bååth E, Tunlid A. 1993. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol Biochem 25:723–30.

    Article  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vororsmarth CJ. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226.

    Article  CAS  Google Scholar 

  • Gebauer G, Schulze ED. 1991. Carbon and nitrogen isotope ratios in different compartments of a healthy and a declining Picea abies forest in the Fichtelgebirge, NE Bavaria. Oecologia 87:1432–939.

    Article  Google Scholar 

  • Giblin AE, Laundre JA, Nadelhoffer KJ, Shaver GR. 1994. Measuring nutrient availability in arctic soils using ion exchange resins: a field test. Soil Sci Soc Am J 58:1154–62.

    Article  CAS  Google Scholar 

  • Güsewell S. 2004. N:P ratios in terrestrial plants: variation and functional significance. New Phyt 164:243–66.

    Article  Google Scholar 

  • Hendricks JJ, Mitchell RJ, Kuehn KA, Pecot SD, Sims SE. 2006. Measuring external mycelia production of ectomycorrhizal fungi in the field: the soil matrix matters. New Phyt 171:179–86.

    Article  CAS  Google Scholar 

  • Hobbie EA, Agerer R. 2009. Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant Soil 327:71–83.

    Article  CAS  Google Scholar 

  • Hobbie EA, Colpaert JV. 2003. Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants. New Phyt 157:115–26.

    Article  CAS  Google Scholar 

  • Hobbie JE, Hobbie EA. 2006. 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra. Ecology 87:816–22.

    Article  PubMed  Google Scholar 

  • Hobbie EA, Hobbie JE. 2008. Natural abundance of 15N in nitrogen-limited forests and tundra can estimate nitrogen cycling through mycorrhizal fungi: a review. Ecosystems 11:815–30.

    Article  CAS  Google Scholar 

  • Hobbie EA, Ouimette AP. 2009. Controls of nitrogen isotope patterns in soil profiles. Biogeochem 95:355–71.

    Article  CAS  Google Scholar 

  • Hobbie EA, Jumpponen A, Trappe J. 2005. Foliar and fungal 15N:14N ratios reflect development of mycorrhizae and nitrogen supply during primary succession: testing analytical models. Oecologia 146:258–68.

    Article  PubMed  Google Scholar 

  • Hobbie JE, Hobbie EA, Drossman H, Conte M, Weber JC, Shamhart J, Weinrobe M. 2009. Mycorrhizal fungi supply nitrogen to host plants in Arctic tundra and boreal forests: 15N is the key signal. Can J Microbiol 55:84–94.

    Article  PubMed  CAS  Google Scholar 

  • Högberg P. 1997. 15N natural abundance in soil-plant systems. New Phyt 139:595.

    Article  Google Scholar 

  • Högberg MN, Högberg P. 2002. Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phyt 154:791–5.

    Article  Google Scholar 

  • Högberg P, Högbom L, Schinkel H, Högberg M, Johannisson C, Wallmark H. 1996. 15N abundance of surface soils, roots and mycorrhizas in profiles of European forest soils. Oecologia 108:207–14.

    Google Scholar 

  • Högberg P, Högberg MN, Quist ME, Ekblad A, Näsholm T. 1999. Nitrogen isotope fractionation during nitrogen uptake by ectomycorrhizal and non-mycorrhizal Pinus sylvestris. New Phyt 142:569–76.

    Article  Google Scholar 

  • Högberg MN, Bååth E, Nordgren A, Arnebrant K, Högberg P. 2003. Contrasting effects of nitrogen availability on plant carbon supply to mycorrhizal fungi and saprotrophs—a hypothesis based on field observations in boreal forest. New Phyt 160:225–38.

    Article  CAS  Google Scholar 

  • Högberg MN, Briones MJI, Keel SG, Metcalfe DB, Campbell C, Midwood AJ, Thornton B, Hurry V, Linder S, Näsholm T, Högberg P. 2010. Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phyt 187:485–93.

    Article  CAS  Google Scholar 

  • Högberg P, Johannison C, Yarwood S, Callesen I, Näsholm T, Myrold DD, Högberg MN. 2011. Recovery of ectomycorrhiza after ‘nitrogen saturation’ of a conifer forest. New Phyt 189:515–25.

    Article  Google Scholar 

  • Hollingsworth TN, Walker MD, Chapin FSIII, Parsons AL. 2006. Scale-dependent environmental controls over species composition in Alaskan black spruce communities. Can J For Res 36:1781–96.

    Article  Google Scholar 

  • Hollingsworth TN, Schuur EAG, Chapin FSIII, Walker MD. 2008. Plant community composition as a predictor of regional soil carbon storage in Alaskan boreal black spruce ecosystems. Ecosystems 11:629–42.

    Article  CAS  Google Scholar 

  • Houlton BZ, Sigman DM, Hedin LO. 2006. Isotopic evidence for large gaseous nitrogen losses from tropical rainforests. Proc Natl Acad Sci USA 103:8745–50.

    Article  PubMed  CAS  Google Scholar 

  • Houlton BZ, Sigman DM, Schuur EAG, Hedin LO. 2007. A climate-driven switch in plant nitrogen acquisition within tropical forest communities. Proc Natl Acad Sci USA 104:8902–6.

    Article  PubMed  CAS  Google Scholar 

  • Howarth RW, Marino R. 2006. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limn Ocean 51:364–76.

    Article  CAS  Google Scholar 

  • Jones DL, Kielland K. 2002. Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils. Soil Biol Biochem 34:209–19.

    Article  CAS  Google Scholar 

  • Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A. 2005. Dissolved organic nitrogen uptake by plants—an important N uptake pathway? Soil Biol Biochem 37:413–23.

    Article  CAS  Google Scholar 

  • Kahmen A, Wanek W, Buchmann N. 2008. Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient. Oecologia 156:861–70.

    Article  PubMed  Google Scholar 

  • Kielland K, Barnett B, Schell D. 1998. Intraseasonal variation in the δ15N signature of taiga trees and shrubs. Can J For Res 28:485–8.

    Article  CAS  Google Scholar 

  • Kielland K, McFarland JW, Olson K. 2007. Rapid cycling of organic nitrogen in taiga forest ecosystems. Ecosystems 10:360–8.

    Article  CAS  Google Scholar 

  • Knapp AN, Sigman DM, Lipschultz F. 2005. N isotopic composition of dissolved organic nitrogen and nitrate at the Bermuda Atlantic Time-series Study site. Glob Biogeochem Cycles 19:GB1018.

    Article  CAS  Google Scholar 

  • Koba K, Hirobe M, Koyama L, Kohzu A, Tokuchi N, Nadelhoffer KJ, Wada E, Takeda H. 2003. Natural 15N abundance of plants and soil N in a temperate coniferous forest. Ecosystems 6:457–69.

    Article  CAS  Google Scholar 

  • Koide RT, Xu B, Sharda J. 2005. Contrasting below-ground views of an ectomycorrhizal fungal community. New Phyt 166:251–62.

    Article  Google Scholar 

  • Kolb KJ, Evans RD. 2002. Implications of leaf nitrogen recycling on the nitrogen isotope composition of deciduous plant tissues. New Phyt 156:57–64.

    Article  Google Scholar 

  • Kranabetter JM, MacKenzie WH. 2010. Contrasts among mycorrhizal plant guilds in foliar nitrogen concentration and δ15N along productivity gradients of a boreal forest. Ecosystems 13:108–17.

    Article  CAS  Google Scholar 

  • Lilleskov EA, Fahey TJ, Horton TR, Lovett GM. 2002. Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83:104–15.

    Article  Google Scholar 

  • Lilleskov EA, Hobbie EA, Horton TR. 2011. Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fung Ecol 2:174–83.

    Article  Google Scholar 

  • Lindahl BD, Taylor AFS. 2004. Occurrence of N-acetylhexosaminidase-encoding genes in ectomycorrhizal basidiomycetes. New Phyt 164:193–9.

    Article  CAS  Google Scholar 

  • Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD. 2007. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phyt 173:611–20.

    Article  CAS  Google Scholar 

  • Mack MC, Schuur EAG, Bret-Hart MS, Shaver GR, Chapin FSIII. 2004. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–3.

    Article  PubMed  CAS  Google Scholar 

  • Mayor JR, Schuur EAG, Henkel TW. 2009. Elucidating the nutritional status of fungi. Ecol Lett 12:171–83.

    Article  PubMed  Google Scholar 

  • McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Giblin AE, Kielland K, Kwiatkowski BL, Landre JA, Murray G. 2002. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415:68–71.

    Article  PubMed  CAS  Google Scholar 

  • Melillo JM, Aber JD, Linkins AE, Ricca A, Fry B, Nadelhoffer KJ. 1989. Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant Soil 115:189–98.

    Article  Google Scholar 

  • Mellilo JM, Cowling EB. 2002. Reactive nitrogen and public policies for environmental protection. Ambio 31:150–8.

    Google Scholar 

  • Michelsen A, Schmidt IK, Jonasson S, Quarmby C, Sleep D. 1996. Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105:53–63.

    Article  Google Scholar 

  • Michelsen A, Quarmby C, Sleep D, Jonasson S. 1998. Vascular plant 15N natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots. Oecologia 115:406–18.

    Article  Google Scholar 

  • Nadelhoffer K, Fry B. 1994. Nitrogen isotope studies in forest ecosystems, Chap 2. In: Lajtha K, Michener R, Eds. Stable isotopes in ecology. Oxford, UK: Blackwell Scientific. p 22–44.

    Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U. 2009. Uptake of organic nitrogen by plants. New Phytologist 182:31–48.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson LO, Wallander H. 2003. Production of external mycelium by ectomycorrhizal fungi in a norway spruce forest was reduced in response to nitrogen fertilization. New Phyt 158:409–16.

    Article  Google Scholar 

  • Nilsson LO, Giesler R, Bååth E, Wallander H. 2005. Growth and biomass of mycorrhizal mycelia in coniferous forests along short natural nutrient gradients. New Phyt 165:613–22.

    Article  Google Scholar 

  • Nygren CMR, Edqvist J, Elfstrand M, Heller G, Taylor AFS. 2007. Detection of extracellular protease activity in different species and genera of ectomycorrhizal fungi. Mycorrhiza 17:241–8.

    Article  PubMed  CAS  Google Scholar 

  • Orwin KH, Kirschbaum MUF, St John MG, Dickie IA. 2011. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecol Lett 14:493–502.

    Article  PubMed  Google Scholar 

  • Ostle NJ, Bol R, Petzke KJ, Jarvis SC. 1999. Compound specific δ15N values: amino acids in grassland and arable soils. Soil Biol Biochem 31:1751–5.

    Article  CAS  Google Scholar 

  • Pardo LH, Nadelhoffer KJ. 2010. Using nitrogen isotope ratios to assess terrestrial ecosystems at regional and global scales. In: West J, Bowen GJ, Dawson TE, Tu KP, Eds. Isoscapes: understanding movement, pattern, and process on Earth through isotope mapping. New York, NY: Springer.

    Google Scholar 

  • Pardo LH, Templer PH, Goodale CL, Duke S, Groffman PM, Adams MB, Boeckx P, Boggs J, Campbell J, Colman B, Compton J, Emmett B, Gundersen P, Kjonaas J, Lovett G, Mack M, Magill A, Mbila M, Mitchell MJ, McGee G, McNulty S, Nadelhoffer K, Ollinger S, Ross D, Rueth H, Rustad L, Schaberg P, Schiff S, Schleppi P, Spoelstra J, Wessel W. 2006. Regional assessment of N saturation using foliar and root delta 15N. Biogeochemistry 80:143–71.

    Article  Google Scholar 

  • Piccolo MC, Neill C, Cerri CC. 1994. Net nitrogen mineralization and net nitrification along a tropical forest-to-pasture chronosequence. Plant Soil 162:61–70.

    Article  CAS  Google Scholar 

  • Pörtl K, Zechmeister-Boltenstern S, Wanek W, Ambus P, Berger TW. 2007. Natural 15N abundance of soil N pools and N2O reflect the nitrogen dynamics of forest soils. Plant Soil 295:79–94.

    Article  CAS  Google Scholar 

  • Read DJ, Leake JR, Perez-Moreno J. 2004. Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–63.

    Article  CAS  Google Scholar 

  • Robinson D. 2001. δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16:153–62.

    Article  PubMed  Google Scholar 

  • Ruess R, Henkdrick RL, Burton AJ, Pregitzer KS, Sveinbjornsson B, Allen MF, Maurer GE. 2003. Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. Ecol Monogr 73:643–62.

    Article  Google Scholar 

  • Schulze ED, Chapin FS, Gebauer G. 1994. Nitrogen nutrition and isotope differences among life forms at the northern treeline of Alaska. Oecologia 100:406–12.

    Article  Google Scholar 

  • Schuur EAG, Matson PA. 2001. Aboveground net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest. Oecologia 128:431–42.

    Article  Google Scholar 

  • Shearer G, Kohl DH. 1986. N2 fixation in field settings, estimations based on natural 15N abundance. Aust J Plant Physiol 13:699–757.

    CAS  Google Scholar 

  • Sigman DM, Casciotti KL, Andreani M, Barford C, Galanter M, Bohlke JK. 2001. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem 73:4145–53.

    Article  PubMed  CAS  Google Scholar 

  • Silfer JA, Engel MH, Macko SA. 1992. Kinetic fractionation of stable carbon and nitrogen isotopes during peptide bond hydrolysis: experimental evidence and geochemical implications. Chem Geo: Iso Geosci sec 101:211–21.

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ. 2008. Nitrogen mobilization and nutrition in ectomycorrhizal plants. New York: Academic Press.

    Google Scholar 

  • Takebayashi Y, Koba K, Sasaki Y, Fang Y, Yoh M. 2010. The natural abundance of 15N in plant and soil-available N indicates a shift of main plant N resources to NO3 from NH4 + along the N leaching gradient. Rapid Commun Mass Spectrom 24:1001–8.

    Article  PubMed  CAS  Google Scholar 

  • Talbot JM, Allison SD, Treseder KK. 2008. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct Ecol 22:955–63.

    Article  Google Scholar 

  • Taylor DL, Herriott IC, Stone KE, McFarland JW, Booth MG, Leigh MB. 2010. Structure and resilience of fungal communities in Alaskan boreal forest soils. Can J For Res 40:1288–301.

    Article  CAS  Google Scholar 

  • Tedersoo L, May TW, Smith ME. 2010. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–63.

    Article  PubMed  Google Scholar 

  • Toljander JF, Eberhardt U, Toljander YK, Paul LR, Taylor AFS. 2006. Species composition of an ectomycorrhizal fungal community along a local nutrient gradient in a boreal forest. New Phyt 170:873–84.

    Article  CAS  Google Scholar 

  • Treseder K, Turner KM, Mack MC. 2007. Mycorrhizal responses to nitrogen fertilization in boreal ecosystems: potential consequences for soil carbon storage. Glob Change Biol 13:78–88.

    Article  Google Scholar 

  • Van Wijk MT, Williams M, Gough L, Hobbie SE, Shaver GR. 2003. Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation? J Ecol 91:664–76.

    Article  Google Scholar 

  • Viereck LA, Johnston WF. 1990. Picea mariana (Mill.) B.S.P. black spruce. In: Burns RM, Honkala BH, Eds. Silvics of North America. Washington D.C: Forest Service, US Department of Agriculture. p 227–37.

    Google Scholar 

  • Vitousek PM. 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecol App 7:737–50.

    Google Scholar 

  • Vitousek PM, Howarth RW. 1991. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115.

    Article  Google Scholar 

  • Vitousek PM, Shearer G, Kohl DH. 1989. Foliar 15N natural abundance in Hawaiian rainforest—patterns and possible mechanisms. Oecologia 78:383–8.

    Article  Google Scholar 

  • Wallander H, Nilsson LO, Hagerberg D, Bååth E. 2001. Estimation of the biomass and production of external mycelium of ectomycorrhizal fungi in the field. New Phyt 151:751–60.

    Article  Google Scholar 

  • Wallander H, Göransson H, Rosengren U. 2004. Production, standing biomass and natural abundance of 15N and 13C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia 139:89–97.

    Article  PubMed  Google Scholar 

  • Wallander H, Mort C-M, Giesler R. 2009. Increasing abundance of soil fungi is a driver for 15N enrichment in soil profiles along a chronosequence undergoing isostatic rebound in northern Sweden. Oecologia 160:87–96.

    Article  PubMed  Google Scholar 

  • Yano Y, Shaver GR, Giblin AE, Rastetter EB. 2010. Depleted 15N in hydrolysable-N of arctic soils and its implication for mycorrhizal fungi–plant interaction. Biogeochemistry 97:183–94.

    Article  CAS  Google Scholar 

  • Yarie J, Kane E, Mack M. 2007. Aboveground biomass equations for the trees of interior Alaska Bulletin of the Agricultural and Forestry Experiment Station at the University of Alaska Fairbanks 115.

  • Yoneyama T, Ito O, WMHG Engelaar. 2003. Uptake, metabolism and distribution of nitrogen in crop plants traced by enriched and natural 15N: progress over the last 30 years. Phytochem Rev 2:121–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by an NSF Doctoral Dissertation award (DGE-0221599), a Forest Fungal Ecology Research award of the Mycological Society of America, an International Association of GeoChemistry Student Research Grant, a Riewald-Olowo Graduate Research Award, and University of Florida Graduate Student Council Travel awards to JRM; DOE and NSF funding to EAGS; and, the logistical support offered by the Ecosystem Ecology Laboratory at the University of Alaska, Fairbanks and the Bonanza Creek Long-Term Ecological Research site. Martin Lavoie, Emily Tissier, Dominique Ardura, Rady Ho, Dat Nyguen, and Rachel Rubin provided field or laboratory assistance. Gary Laursen assisted with fungal identifications. The manuscript benefited from the input of John Hobbie and two anonymous reviewers. Raw data to be made available at the Bonanza Creek LTER database (http://www.lter.uaf.edu/data_b.cfm).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan R. Mayor.

Additional information

Author contribution

J.M., E.S., and M.M. conceived of the study; JM performed the research and analyzed data; E.B., T.H., and M.M. contributed data; J.M., T.S., and E.B. wrote the manuscript.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayor, J.R., Schuur, E.A.G., Mack, M.C. et al. Nitrogen Isotope Patterns in Alaskan Black Spruce Reflect Organic Nitrogen Sources and the Activity of Ectomycorrhizal Fungi. Ecosystems 15, 819–831 (2012). https://doi.org/10.1007/s10021-012-9548-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-012-9548-9

Keywords

Navigation