Skip to main content

Advertisement

Log in

Drought-Induced Multifactor Decline of Scots Pine in the Pyrenees and Potential Vegetation Change by the Expansion of Co-occurring Oak Species

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Episodes of drought-induced tree dieback have been recently observed in many forest areas of the world, particularly at the dry edge of species distributions. Under climate change, those effects could signal potential vegetation shifts occurring over large geographical areas, with major impacts on ecosystem form and function. In this article, we studied the effect of a single drought episode, occurred which in summer 2005, on a Scots pine population in central Pyrenees (NE Spain). Our main objective was to study the environmental correlates of forest decline and vegetation change at the plot level. General and generalized linear models were used to study the relationship between canopy defoliation, mortality and recruitment, and plot characteristics. A drought-driven multifactor dieback was observed in the study forest. Defoliation and mortality were associated with the local level of drought stress estimated at each plot. In addition, stand structure, soil properties, and mistletoe infection were also associated with the observed pattern of defoliation, presumably acting as long-term predisposing factors. Recruitment of Scots pine was low in all plots. In contrast, we observed abundant recruitment of other tree species, mostly Quercus ilex and Q. humilis, particularly in plots where Scots pine showed high defoliation and mortality. These results suggest that an altitudinal upwards migration of Quercus species, mediated by the dieback of the currently dominant species, may take place in the studied slopes. Many rear-edge populations of Scots pine sheltered in the mountain environments of the Iberian Peninsula could be at risk under future climate scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Allen CD, Breshears DD. 1998. Drought-induced shift of a forest-woodland ecotone: Rapid landscape response to climate variation. Ecology 95:14839–42.

    CAS  Google Scholar 

  • Allen RG, Pereira LS, Raes D. 1998. Crop evapotranspiration—Guidelines for computing crop water requirements. FAO Irrigation and drainage paper, No. 56. Italy: Rome.

    Google Scholar 

  • Allen CD, Macalady A, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Gonzales P, Hogg T, Rigling A, Breshears DD, Fensham R, Zhang Z, Kitzberger T, Lim JH, Castro J, Running SW, Allard G, Semerci A, Cobb N. 2010. Climate-induced forest mortality: a global overview of emerging risks. For Ecol Manag. doi:10.1016/j.foreco.2009.09.001.

  • Auclair AND. 1993. Extreme climatic fluctuations as a cause of forest dieback in the Pacific Rim. Water Air Soil Pollut 66:207–29.

    Google Scholar 

  • Aukema JE, Martínez del Rio C. 2002. Where does a fruit-eating bird deposit mistletoe seeds? Seed deposition patterns and an experiment. Ecology 83(12):3489–96.

    Article  Google Scholar 

  • Barbéro M, Loisel R, Quézel P, Richardson DM, Romane F. 1998. Pines of the Mediterranean Basin. In: Richardson DM, Ed. Ecology and biogeography of Pinus. Cambridge: Cambridge University Press. pp 153–70.

  • Beven K, Kirkby MJ. 1979. A physically based variable contributing area model of basin hydrology. Hydrol Sci Bull 24(1):43–69.

    Article  Google Scholar 

  • Bigler C, Bräker OU, Bugmann H, Dobbertin M, Rigling A. 2006. Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9:330–43.

    Article  Google Scholar 

  • Bravo-Oviedo A, Sterba H, Río M, Bravo F. 2005. Competition-induced mortality for Mediterranean Pinus pinaster Ait and Pinus sylvestris L. For Ecol Manag 222:88–98.

    Article  Google Scholar 

  • Bréda N, Badeau V. 2008. Forest tree responses to extreme drought and some biotic events: towards a selection according to hazard tolerance? CR Geosci 340:651–62.

    Article  Google Scholar 

  • Bréda N, Huc R, Granier A, Dreyer E. 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–44.

    Article  Google Scholar 

  • Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW. 2005. Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci USA (PNAS) 102(42):15144–8.

    Article  CAS  Google Scholar 

  • Briones O, Montaña C, Ezcurra E. 1998. Competition intensity as a function of resource availability in a semiarid ecosystem. Oecologia 116:365–72.

    Article  Google Scholar 

  • Broadmeadow MSJ, Jackson SB. 2000. Growth responses of Quercus petraea, Fraxinus excelsior and Pinus sylvestris to elevated carbon dioxide, ozone and water supply. New Phytol 146:437–51.

    Article  CAS  Google Scholar 

  • Callaway RM, Walker LR. 1997. Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78(7):1958–65.

    Article  Google Scholar 

  • Camarero JJ, Padró A, Martín E, Gil-Peregrín E. 2002. Aproximación dendroecológica al decaimiento del abeto (Abies alba Mill.) en el Pirineo aragonés. Montes 70:26–33.

    Google Scholar 

  • Castro J. 1999. Seed mass versus seedling performance in Scots pine: a maternally dependent trait. New Phytol 144:153–61.

    Article  Google Scholar 

  • Castro J, Zamora R, Hódar JA, Gómez JM. 2004. Seedling establishment of a boreal tree species (Pinus sylvestris) at its southernmost distribution limit: consequences of being in a marginal Mediterranean habitat. J Ecol 92:266–77.

    Article  Google Scholar 

  • Castroviejo S, Lainz M, López González G, Montserrat P, Muñoz Garmendia F, Paiva J, Villar L, Eds. 1986. Flora ibérica: plantas vasculares de la Península Ibérica e Islas Baleares, Vol. 1. Madrid: C.S.I.C.

    Google Scholar 

  • Ceballos L, Ruiz de la Torre J. 1971. Árboles y Arbustos de la España Peninsular. Madrid: Instituto Forestal de Investigaciones y Experiencias.

    Google Scholar 

  • Chen HYH, Fu S, Monserud RA, Gillies IC. 2008. Relative size and stand age determine Pinus banksiana mortality. For Ecol Manag 255:3980–4.

    Article  Google Scholar 

  • Clark PJ, Evans FC. 1954. Distances to nearest neighbour as a measure of spatial relationships in populations. Ecology 35:445–53.

    Article  Google Scholar 

  • Condit R. 1998. Ecological implications of changes in drought patterns: shifts in forest composition in Panama. Clim Change 39(2–3):413–27.

    Article  Google Scholar 

  • Connell JH. 1978. Diversity in tropical rain forests and coral reefs. Science 199(4335):1302–10.

    Article  PubMed  CAS  Google Scholar 

  • Croisé L, Lieutier F. 1993. Effects of drought on the induced defence reaction of Scots pine to bark beetle-associated fungi. Ann Sci For 50:91–7.

    Article  Google Scholar 

  • Das AJ, Battles JJ, Stephenson NL, van Mantgem PJ. 2007. The relationship between tree growth patterns and likelihood of mortality: a study of two tree species in the Sierra Nevada. Can J For Res 37:580–97.

    Article  Google Scholar 

  • Dobbertin M. 1999. Relating defoliation and its causes to premature tree mortality. In: Forster B, Knizek M, Grodzki W, Eds. Methodology of forest insect and disease survey in Central Europe. Proceedings of the second workshop of the IUFRO WP, Sion-Chateauneuf, Switzerland. Birmensdorf: Swiss Federal Institute for Forest, Snow and Landscape (WSL). pp 215–220.

  • Dobbertin M, Brang P. 2001. Crown defoliation improves tree mortality models. For Ecol Manag 141(3):271–84.

    Article  Google Scholar 

  • Dobbertin M, Rigling A. 2006. Pine mistletoe (Viscum album ssp austriacum) contributes to Scots pine (Pinus sylvestris) mortality in the Rhone valley of Switzerland. For Pathol 36:309–22.

    Google Scholar 

  • Dobbertin M, Wermelinger B, Bigler C, Bürgi M, Carron M, Forster B, Gimmi U, Rigling A. 2007. Linking increasing drought stress to Scots Pine mortality and bark beetle infestations. Sci World J 7(S1):231–9.

    Google Scholar 

  • Dunn JP, Potter DA, Kimmerer TW. 1990. Carbohydrate reserves, radial growth and mechanisms of resistance of oak trees to phloem-boring insects. Oecologia 83:458–68.

    Article  Google Scholar 

  • Ehleringer JR, Marshall JD. 1995. Water relations. In: Press MC, Graves JD, Eds. Parasitic plants. London: Chapman & Hall.

    Google Scholar 

  • European Environment Agency (EEA). 2008. Impacts of Europe’s changing climate—2008 indicator-based assessment. European Environment Agency summary, report No. 4. Copenhagen: European Environment Agency.

    Google Scholar 

  • Faraway JJ. 2006. Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models. Boca Raton (FL): Chapman and Hall.

    Google Scholar 

  • Fischer JT. 1983. Water relations of mistletoes and their hosts. In: Calder M, Bernhard T, Eds. The biology of mistletoes. Sydney: Academic Press. p 163–84.

    Google Scholar 

  • Franklin JF, Shugart HH, Harmon ME. 1987. Tree death as an ecological process: the causes, consequences and variability of tree mortality. Bio-Science 37:550–6.

    Google Scholar 

  • García-Ruiz JM, Lasanta T, Ruiz-Flano P, Ortigosa L, White S, González C, Martí C. 1996. Land-uses changes and sustainable development in mountain areas: a case study in the Spanish Pyrenees. Landsc Ecol 11(5):267–77.

    Article  Google Scholar 

  • Grayson RB, Western AW, Chiew FHS, Blöschl G. 1997. Preferred states in spatial soil moisture patterns: local and nonlocal controls. Water Resour Res 33(12):2897–908.

    Article  Google Scholar 

  • Grayson R, Western A, Wilson D, Young R, McMahon T, Woods R, Duncan M, Blöschl G. 1999. Measurement and interpretation of soil moisture for hydrological applications. Water 99: Joint Congress. Brisbane: IE Aust. pp 5–9.

  • Guarín H, Taylor AH. 2005. Drought triggered tree mortality in mixed conifer forests in Yosemite National Park, California, USA. For Ecol Manag 218:229–44.

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Ewers BE, Ellsworth DS, Schäfer KVR, Oren R. 2000. Influence of soil porosity on water use in Pinus taeda. Oecologia 124:495–505.

    Article  Google Scholar 

  • Hampe A, Petit RJ. 2005. Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–7.

    Article  Google Scholar 

  • Hargreaves GH, Samani ZA. 1985. Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–9.

    Google Scholar 

  • Hegyi F. 1974. A simulation model for managing jackpine stands. In: Fries J, Ed. Growth models for tree and stand simulation. Stockholm: Royal College of Forestry. p 74–90.

    Google Scholar 

  • Hódar JA, Castro J, Zamora R. 2003. Pine processionary caterpillar Thaumetopoea pityocampa as a new threat for relict Mediterranean Scots pine forests under climatic warming. Biol Conserv 110:123–9.

    Article  Google Scholar 

  • Hubbell SP, Foster RB. 1986. Canopy gaps and the dynamics of a neotropical forest. In: Crawley MJ, Ed. Plant ecology. Oxford: Blackwell Scientific Publications. p 77–96.

    Google Scholar 

  • Hultine KR, Koepke DF, Pockman WT, Fravolini A, Sperry JS, Williams DG. 2005. Influence of soil texture on hydraulic properties and water relations of a dominant warm-desert phreatophyte. Tree Physiol 26:313–23.

    Article  Google Scholar 

  • IPCC. 2007. Climate change 2007: the physical science basis. Contribution of Working Group I to the forth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. p 1009.

  • Karlsson PS, Nordell KO. 1987. Growth of Betula pubescens and Pinus sylvestris seedlings in a subartic environment. Funct Ecol 1(1):37–44.

    Article  Google Scholar 

  • Keeley JE, Zedler PH. 1998. Evolution of life histories in Pinus. In: Richardson DM, Ed. Ecology and biogeography of Pinus. Cambridge: Cambridge University Press. p 153–70.

    Google Scholar 

  • Kelly AE, Goulden ML. 2008. Rapid shifts in plant distribution with recent climate change. Proc Natl Acad Sci USA (PNAS) 105(33):11823–6.

    Article  Google Scholar 

  • Kenkel NC. 1988. Pattern of self-thinning in Jack pine: testing the random mortality hypothesis. Ecology 69(4):1017–24.

    Article  Google Scholar 

  • Linares JC, Camarero JJ, Carreira JA. 2009. Interacting effects of changes in climate and forest cover on mortality and growth of the southernmost European fir forests. Glob Ecol Biogeogr 18:485–97.

    Article  Google Scholar 

  • Lloret F, Siscart D, Dalmases C. 2004. Canopy recovery after drought dieback in holm-oak Mediterranean forests of Catalonia (NE Spain). Glob Change Biol 10:2092–9.

    Article  Google Scholar 

  • Manion PD. 1991. Tree disease concepts. Upper Saddle River (NJ): Prentice Hall.

    Google Scholar 

  • Marañón T, Zamora R, Villar R, Zavala MA, Quero JL, Pérez-Ramos I, Mendoza I, Castro J. 2004. Regeneration of tree species and restoration under contrasted Mediterranean habitats: field and glasshouse experiments. Int J Ecol Environ Sci 30(3):187–96.

    Google Scholar 

  • Martínez-García F. 1999. Los bosques de Pinus sylvestris L. del Sistema Central español. Distribución, història, composición florística y tipología. PhD thesis. Universidad Complutense de Madrid, Madrid, Spain.

  • Martínez-Vilalta J, Piñol J. 2002. Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. For Ecol Manag 161:247–56.

    Article  Google Scholar 

  • Mathiasen RL, Nickrent DL, Shaw DC, Watson DM. 2008. Mistletoes: pathology, systematics, ecology and management. Plant Dis 92(7):988–1006.

    Article  Google Scholar 

  • Mattson WJ, Haack RA. 1987. The role of drought in outbreaks of plant-eating insects. Bioscience 37(2):110–18.

    Article  Google Scholar 

  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA. 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178(4):719–39.

    Article  PubMed  Google Scholar 

  • Millar CI, Stephenson NL, Stephens SL. 2007. Climate change and forests of the future: managing in the face of uncertainty. Ecol Appl 17(8):2145–51.

    Article  PubMed  Google Scholar 

  • Mueller RC, Scudder CM, Porter ME, Trotter RTIII, Gehring CA, Whitham TG. 2005. Differential tree mortality in response to severe drought: evidence for long-term vegetation-shifts. J Ecol 93:1085–93.

    Article  Google Scholar 

  • Mutke S, Gordo J, Gil L. 2005. Variability of Mediterranean Stone pine cone production: yield loss as response to climate change. Agric For Meteorol 132:263–72.

    Article  Google Scholar 

  • Negrón JF, McMillin JD, Anhold JA, Coulson D. 2009. Bark beetle-caused mortality in a drought-affected ponderosa pine landscape in Arizona, USA. For Ecol Manag 257:1353–62.

    Article  Google Scholar 

  • Ninyerola M, Pons X, Roure JM. 2000. A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. Int J Climatol 20:1823–41.

    Article  Google Scholar 

  • O’Loughlin EM. 1986. Predictions of surface saturation zones in natural catchments by topographic analysis. Water Resour Res 22:794–804.

    Article  Google Scholar 

  • Oberhuber W. 2001. The role of climate in the mortality of Scots pine (Pinus sylvestris L.) exposed to soil dryness. Dendrochronologia 19:45–55.

    Google Scholar 

  • Pedersen BS. 1998. The role of stress in the mortality of Midwestern oaks as indicated by growth prior to death. Ecology 79:79–93.

    Article  Google Scholar 

  • Peet RK, Christensen NL. 1987. Competition and tree death. Bioscience 37(8):586–95.

    Article  Google Scholar 

  • Peñuelas J, Boada M. 2003. A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Change Biol 9:131–40.

    Article  Google Scholar 

  • Pigott CD, Pigott S. 1993. Water as a determinant of the distribution of trees at the boundary of the Mediterranean zone. J Ecol 81:557–66.

    Article  Google Scholar 

  • Pons X. 1996. Estimación de la Radiación Solar a partir de modelos digitales de elevaciones. Propuesta metodológica. In: Juaristi J, Moro I, Eds. VII Coloquio de Geografía Cuantitativa, Sistemas de Información Geográfica y Teledetección. Spain: Vitoria-Gasteiz.

    Google Scholar 

  • Poyatos R, Latron J, Llorens P. 2003. Land use and land cover change after agricultural abandonment. The case of a Mediterranean Mountain area (Catalan Pre-Pyrenees). Mt Res Dev 23(4):362–8.

    Article  Google Scholar 

  • Press MC, Graves JD, Stewart GR. 1988. Transpiration and carbon acquisition in root hemiparasitic angiosperms. J Exp Bot 39(8):1009–14.

    Article  Google Scholar 

  • Pugnaire FI, Armas C, Tirado R. 2000. Balance de las interacciones entre plantas en ambientes mediterráneos. In: Zamora R, Pugnaire FI, Eds. Ecosistemas mediterráneos Análisis funcional. Granada: C.S.I.C.-A.E.E.T. p 213–35.

    Google Scholar 

  • Rebetez M, Dobbertin M. 2004. Climate change may already threaten Scots pine stands in the Swiss Alps. Theor Appl Climatol 79:1–9.

    Article  Google Scholar 

  • Reich PB, Oleksyn J, Tjoelker MG. 1994. Seed mass effects on germination and growth of diverse European Scots pine populations. Can J For Res 24:306–20.

    Article  Google Scholar 

  • Rice KJ, Matzner SL, Byer W, Brown JR. 2004. Patterns of tree dieback in Queensland, Australia: the importance of drought stress and the role of resistance to cavitation. Oecologia 139:190–8.

    Article  PubMed  Google Scholar 

  • Sack L, Grubb PJ. 2002. The combined impacts of deep shade and drought on the growth and biomass allocation of shade-tolerant woody seedlings. Oecologia 131:175–85.

    Article  Google Scholar 

  • Saxton KE, Rawls WJ, Romberger JS, Papendick RI. 1986. Estimating generalized soil-water characteristics from texture. Soil Sci Soc Am J 50:1031–6.

    Article  Google Scholar 

  • Schaffer B, Hawksworth FG, Jacobi WR. 1983. Effects of Comandra Blister Rust and Dwarf Mistletoe on cone and seed production of Lodgepole Pine. Plant Dis 67:215–17.

    Article  Google Scholar 

  • Schultz RC, Gatherum GE. 1971. Photosynthesis and distribution of assimilate of Scotch pine seedlings in relation to soil moisture and provenance. Bot Gazette 132(2):91–6.

    Article  Google Scholar 

  • Singh P, Carew GC. 1989. Impact of eastern dwarf mistletoe in black spruce forests of Newfoundland. Eur J For Pathol 19(5–6):305–22.

    Article  Google Scholar 

  • Slik JWF. 2004. El Niño droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia 141:114–20.

    Article  PubMed  CAS  Google Scholar 

  • Smith TF, Rizzo DM, North M. 2005. Patterns of mortality in an old-growth mixed-conifer forest of the southern Sierra Nevada, California. For Sci 51(3):266–75.

    Google Scholar 

  • Sperry JS, Hacke UG. 2002. Desert shrub water relations with respect to soil characteristics and plant functional type. Funct Ecol 16:367–78.

    Article  Google Scholar 

  • Sperry JS, Adler FR, Campbell GS, Comstock JP. 1998. Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant Cell Environ 21:347–59.

    Article  Google Scholar 

  • Stephenson NL. 1990. Climatic control of vegetation distribution: the role of water balance. Am Nat 135:649–70.

    Article  Google Scholar 

  • Strong GL, Bannister P. 2002. Water relations of temperate mistletoes on various hosts. Funct Plant Biol 29(1):89–96.

    Article  Google Scholar 

  • Suarez ML, Kitzberger T. 2008. Recruitment patterns following a severe drought: long-term compositional shifts in Patagonian forests. Can J For Res 38:3002–10.

    Article  Google Scholar 

  • Van Mantgem PJ, Stephenson NL. 2007. Apparent climatically induced increase of tree mortality rates in a temperate forest. Ecol Lett 10:909–16.

    Article  PubMed  Google Scholar 

  • Van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fulé PZ, Harmon ME, Larson AJ, Smith JM, Taylor AH, Veblen TT. 2009. Widespread increase of tree mortality rates in the western United States. Science 323:521–4.

    Article  PubMed  CAS  Google Scholar 

  • Waring RH. 1987. Characteristics of trees predisposed to die. Bioscience 37(8):569–74.

    Article  Google Scholar 

  • Western AW, Grayson RB, Blöschl G. 2002. Scaling of soil moisture: a hydraulic perspective. Annu Rev Earth Planet Sci 30:149–80.

    Article  CAS  Google Scholar 

  • White GC, Bennetts RE. 1996. Analysis of frequency count data using the negative binomial distribution. Ecology 77(8):2549–57.

    Article  Google Scholar 

  • Williams DW, Liebhold AM. 2002. Climate change and the outbreak ranges of two North American bark beetles. Agric For Entomol 4:87–99.

    Article  Google Scholar 

  • Williamson GB, Laurance WF, Oliveira AA, Delamonica P, Gascon C, Lovejoy TE, Pohl L. 2000. Amazonia tree mortality during the 1997 El Niño drought. Conserv Biol 14:1538–42.

    Article  Google Scholar 

  • Worldwide Bioclimatic Classification System. 1996–2009. S.Rivas-Martinez & S.Rivas-Saenz, Phytosociological Research Center, Spain. http://www.globalbioclimatics.org.

  • Zlotin RI, Parmenter RR. 2008. Patterns of mast production in pinyon and juniper woodlands along a precipitation gradient in central New Mexico (Sevilleta National Wildlife Refuge). J Arid Environ 72(9):1562–72.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Catalan Forest Service, and especially Carles Fañanàs Aguilera, for facilitating our field work and for their generous comments. We are also indebted to all the undergraduate students (Miriam, Albert, Nil, Joan) that were involved in this study. We appreciate helpful comments from Bernat Claramunt, Javier Retana, and Jofre Carnicer on the earlier version of the manuscript. This study was supported by the Spanish Ministry of Education and Sciences via competitive projects CGL2006-01293, CGL2007-60120, and CSD2008-0004. LG was supported by an FPI scholarship from the Spanish Ministry of Education and Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Galiano.

Additional information

Author contributions

Lucía Galiano conceived of or designed study, performed research, analyzed data, contributed new methods or models, wrote the paper; Jordi Martínez-Vilalta conceived of or designed study, contributed new methods or models; Francisco Lloret conceived of or designed study, contributed new methods or models.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure s1

Size (DBH) class distribution of the studied Scots pine population. N = 1002 (Tif 8940 kb)

Supplementary Figure s2

Average seedling abundance of all species found in the study at the plot level (Tif 8904 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galiano, L., Martínez-Vilalta, J. & Lloret, F. Drought-Induced Multifactor Decline of Scots Pine in the Pyrenees and Potential Vegetation Change by the Expansion of Co-occurring Oak Species. Ecosystems 13, 978–991 (2010). https://doi.org/10.1007/s10021-010-9368-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-010-9368-8

Key words

Navigation