Skip to main content

Advertisement

Log in

Comparative Biogeochemical Cycles of Bioenergy Crops Reveal Nitrogen-Fixation and Low Greenhouse Gas Emissions in a Miscanthus × giganteus Agro-Ecosystem

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

We evaluated the biogeochemical cycling and relative greenhouse gas (GHG) mitigation potential of proposed biofuel feedstock crops by modeling growth dynamics of Miscanthus × giganteus Greef et Deuter (miscanthus), Panicum virgatum L. (switchgrass), Zea mays L. (corn), and a mixed prairie community under identical field conditions. DAYCENT model simulations for miscanthus were parameterized with data from trial plots in Europe and Illinois, USA. Switchgrass, corn, and prairie ecosystems were simulated using parameters published in the literature. A previously unknown source of nitrogen (N) was necessary to balance the plant nutrient budget in miscanthus crops, leading us to hypothesize that miscanthus growth depends on N-fixation. We tested for nitrogenase activity by acetylene reduction of whole rhizomes and bacteria isolated from the rhizosphere and miscanthus tissue. Our results supported the hypothesis that biological N-fixation contributed to the N demand of miscanthus, a highly productive perennial grass. Corn agro-ecosystems emit 956 to 1899 g CO2eq m−2y−1 greater GHGs (including CO2, N2O, CH4) to the atmosphere than the other biofuel crop alternatives because of greater N2O emissions from fertilizer additions. Of the feedstock crops evaluated in this study, miscanthus would result in the greatest GHG reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Adler PR, Del Grosso SJ, Parton WJ. 2007. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecol Appl 17:675–91.

    Article  PubMed  Google Scholar 

  • Anderson-Teixeira KJ, Davis SC, Masters MD, DeLucia EH. 2009. Changes in soil organic carbon under biofuel crops. Glob Change Biol Bioenergy 1:75–96.

    CAS  Google Scholar 

  • Baldani JI, Baldani VLD. 2005. History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. Ann Braz Acad Sci 77:549–79.

    CAS  Google Scholar 

  • Beale CV, Bint DA, Long SP. 1996. Leaf photosynthesis in the C4-grass Miscanthus × giganteus, growing in the cool temperate climate of southern England. J Exp Bot 47:267–73.

    Article  CAS  Google Scholar 

  • Beale CV, Long S. 1995. Can perennial C4 grasses attain high efficiencies of radiant energy conversion in cool climates? Plant Cell Environ 18:641–50.

    Article  Google Scholar 

  • Beale CV, Long SP. 1997. Seasonal dynamics of nutrient accumulation and partitioning in the perennial C4-grasses Miscanthus × giganteus and Spartina cynosuroides. Biomass Bioenergy 6:419–28.

    Article  Google Scholar 

  • Beuch S, Boelcke B, Belau L. 2000. Effects of the organic residues of Miscanthus × giganteus on the soil organic matter level of arable soils. J Agron Crop Sci 183:111–19.

    Article  Google Scholar 

  • Boddey RM, Urquiaga S, Alves BJR, Reis V. 2003. Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252:139–49.

    Article  CAS  Google Scholar 

  • Burris RH. 1994. Comparative study of the response of Azotobacter vinelandii and Acetobacter diazotrophicus to changes in pH. Protoplasma 183:62–6.

    Article  Google Scholar 

  • Chelius MK, Triplett EW. 2000. Immunolocalization of dinitrogenase reductase produced by Klebsiella pneumoniae in association with Zea mays L. Appl Environ Microbiol 66:783–7.

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Moulin L, Bontemps C, Vandamme P, Bena G, Boivin-Masson C. 2003. Legume symbiotic nitrogen fixation by β-proteobacteria is widespread in nature. J Bacteriol 185:7266–72.

    Article  CAS  PubMed  Google Scholar 

  • Christian DG, Riche AB, Yates NE. 2008. Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests. Ind Crop Prod 28:320–7.

    Article  Google Scholar 

  • Clifton-Brown JC, Lewandowski I. 2000. Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytol 148:287–94.

    Article  Google Scholar 

  • Cosentino SL, Patane C, Sanzone E, Copani V, Foti S. 2007. Effects of soil water content and nitrogen supply on the productivity of Miscanthus × giganteus Greef et Deu in a Mediterranean environment. Ind Crop Prod 25:75–88.

    Article  Google Scholar 

  • Crutzen PJ, Mosier AR, Smith KA, Winiwarter W. 2008. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8:389–95.

    CAS  Google Scholar 

  • Danalatos NG, Archontoulis SV, Mitsios I. 2007. Potential growth and biomass productivity of Miscanthus × giganteus as affected by plant density and N-fertilization in central Greece. Biomass Bioenergy 31:145–52.

    Article  Google Scholar 

  • David MB, Del Grosso S, Hu X, Marshall EP, McIsaac GF, Parton WJ, Tonitto C, Youseff MA. 2009. Modeling denitrification in a tile-drained, corn and soybean agroecosystem of Illinois, USA. Biogeochemistry (in press). doi:10.1007/s10533-10008-19273-10539

  • Davis SC, Anderson-Teixeira KJ, DeLucia EH. 2009. Life-cycle analysis and the ecology of biofuels. Trends Plant Sci 14:140–6.

    Article  CAS  PubMed  Google Scholar 

  • Davis SC, Yannarell AC, Masters MD, Anderson-Teixeira KJ, Drake JE, Darmody RG, Mackie RI, David MB, DeLucia EH. Restoration of soil organic carbon with cultivation of perennial biofuel crops. Agr Ecosyst Environ, unpublished.

  • Del Grosso S, Mosier AR, Parton WJ, Ojima DS. 2005. DAYCENT model analysis of past and contemporary soil N2O and net greenhouse gas flux for major crops in the USA. Soil Tillage Res 83:9–24.

    Article  Google Scholar 

  • Del Grosso S, Ojima D, Parton WJ, Mosier AR, Peterson G, Schimel D. 2002. Simulated effects of dryland cropping intensification on soil organic matter and greenhouse gas exchanges using the DAYCENT ecosystem model. Environ Pollut 116:S75–83.

    Article  CAS  PubMed  Google Scholar 

  • Del Grosso S, Ojima D, Parton WJ, Stehfest E, Heistemann M, Deangelo B, Rose S. 2009. Global scale DAYCENT model analysis of greenhouse gas mitigation strategies for cropped soils. Global Planet Change 67:44–50.

    Article  Google Scholar 

  • Del Grosso S, Parton WJ, Mosier AR, Hartman M, Brenner J, Ojima D, Schimel D. 2001. Simulated interaction of carbon dynamics and nitrogen trace gas fluxes using the DAYCENT model. In: Schaffer MJ, Ma L, Hansen S, Eds. Modeling carbon and nitrogen dynamics for soil management. Boca Raton: CRC Press. p 303–32.

    Google Scholar 

  • Dohleman FG, Heaton EA, Leakey ADB, Long SP. 2009. Does greater leaf-level photosynthesis explain the larger solar energy conversion efficiency of miscanthus relative to switchgrass? Plant Cell Environ 32:1525–37.

    Article  CAS  PubMed  Google Scholar 

  • Dong ZM, Canny MJ, Mccully ME, Roboredo MR, Cabadilla CF, Ortega E, Rodes R. 1994. A nitrogen-fixing endophyte of sugarcane stems—a new role for the apoplast. Plant Physiol 105:1139–47.

    CAS  PubMed  Google Scholar 

  • Eckert B, Weber OB, Kirchhof G, Halbritter A, Stoffels M, Hartmann A. 2001. Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int J Syst Evol Microbiol 51:17–26.

    CAS  PubMed  Google Scholar 

  • EIA. 2008. International Energy Outlook 2008. Energy Information Administration.

  • Field CB, Campbell JE, Lobell DB. 2007. Biomass energy: the scale of the potential resource. Trends Ecol Evol 23:65–72.

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Gunnar M, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R. 2007. Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Marquis M, Averyt KB, Tignor MMB, Miller HL, Chen Z, Eds. Climate change 2007: the physical science basis. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Garten CT, Classen AT, Norby RJ, Brice DJ, Weltzin JF, Souza L. 2008. Role of N2-fixation in constructed old-field communities under different regimes of [CO2], temperature, and water availability. Ecosystems 11:125–37.

    Article  CAS  Google Scholar 

  • Haahtela K, Wartiovaara T, Sundman V, Skujins J. 1981. Root-associated N2 fixation (acetylene reduction) by Enterobacteriaceae and Azospirillum strains in cold-climate spodosols. Appl Environ Microbiol 41:203–6.

    CAS  PubMed  Google Scholar 

  • Heaton E, Dohleman FG, Long S. 2009. The impact of harvest time on nitrogen dynamics in Miscanthus and switchgrass. Glob Change Biol Bioenergy 1:297–307.

    CAS  Google Scholar 

  • Heaton E, Voigt T, Long S. 2004. A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy 27:21–30.

    Article  Google Scholar 

  • Heaton EA, Dohleman FG, Long SP. 2008. Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Change Biol 14:2000–14.

    Article  Google Scholar 

  • Kelly RH, Parton WJ, Hartman MD, Stretch LK, Ojima DS, Schimel DS. 2000. Intra-annual and interannual variability of ecosystem processes in shortgrass steppe. J Geophys Res 105:20093–100.

    Article  CAS  Google Scholar 

  • Lane DJ. 1991. 16S/23S rRNA sequencing. In: Stachebrandt E, Goodfellow M, Eds. Nucleic acid techniques in bacterial systematics. Chichester, UK: Wiley.

    Google Scholar 

  • Miguez FE, Villamil MB, Long SP, Bollero GA. 2008. Meta-analysis of the effects of management factors on Miscanthus × giganteus growth and biomass production. Agric For Meteorol 148:1280–92.

    Article  Google Scholar 

  • Miyamoto T, Kawahara M, Minamisawa K. 2004. Novel endophytic nitrogen-fixing Clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis. Appl Environ Microbiol 70:6580–6.

    Article  CAS  PubMed  Google Scholar 

  • Montañez A, Abreu C, Gill PR, Hardarson G, Sicardi M. 2009. Biological nitrogen fixation in maize (Zea mays L.) by 15N isotope-dilution and identification of associated culturable diazotrophs. Biol Fertil Soils 45:253–63.

    Article  CAS  Google Scholar 

  • Mulvaney RL, Khan SA, Ellsworth TR. 2005. Need for a soil-based approach in managing nitrogen fertilizers for profitable corn production. Soil Sci Soc Am 70:172–82.

    Article  CAS  Google Scholar 

  • Palus JA, Borneman J, Ludden PW, Triplett EW. 1996. A diazotrophic bacterial endophyte isolated from stems of Zea mays L. and Zea luxurians Iltis and Doebley. Plant Soil 186:135–42.

    Article  CAS  Google Scholar 

  • Parton WJ, Hartman M, Ojima D, Schimel D. 1998. DAYCENT and its land surface submodel: description and testing. Global Planet Change 19:35–48.

    Article  Google Scholar 

  • Parton WJ, Holland EA, Del Grosso S, Hartman M, Martin RE, Mosier AR, Ojima D, Schimel D. 2001. Generalized model for NOx and N2O emissions from soils. J Geophys Res 106:17403–20.

    Article  CAS  Google Scholar 

  • Parton WJ, Morgan JA, Wang G, Del Grosso S. 2007. Projected ecosystem impact of the Prairie Heating and CO2 enrichment experiment. New Phytol 174:823–34.

    Article  CAS  PubMed  Google Scholar 

  • Parton WJ, Ojima DS, Cole CV, Schimel DS. 1994. A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management. In: Bryant RB, Arnold RW, Eds. Quantitative modeling of soil forming processes. Madison, WI: Soil Science Society of America. p 147–67.

    Google Scholar 

  • Pepper DA, Del Grosso S, McMurtrie RE, Parton WJ. 2005. Simulated carbon sink response of shortgrass steppe, tallgrass prairie and forest ecosystems to rising [CO2], temperature and nitrogen input. Global Biogeochem Cycles 19:GB100. doi:100.1029/2004GB002226.

  • Robertson GP, Paul EA, Harwood RR. 2000. Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 289:1922–5.

    Article  CAS  PubMed  Google Scholar 

  • Rosch C, Bothe H. 2005. Improved assessment of denitrifying, N2-fixing, and total-community bacteria by terminal restriction fragment length polymorphism analysis using multiple restriction enzymes. Appl Environ Microbiol 71:2026–35.

    Article  PubMed  CAS  Google Scholar 

  • Sevilla M, Burris RH, Gunapala N, Kennedy C. 2001. Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and nif-mutant strains. Am Phytopathol Soc 14:358–66.

    CAS  Google Scholar 

  • Tilman D, Hill J, Lehman C. 2006. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1598–600.

    Article  CAS  PubMed  Google Scholar 

  • Triplett EW. 1996. Diazotrophic endophytes: progress and prospects for nitrogen fixation in monocots. Plant Soil 186:29–38.

    Article  CAS  Google Scholar 

  • U.S.DOE. 2006. Breaking the biological barriers to cellulosic ethanol: a joint research agenda. In: Houghton J, Weatherwax S, Ferrell J, Eds. Biomass to biofuels workshop. MD: Rockville. p 206.

    Google Scholar 

  • Vogel KP, Brejda JJ, Walters DT, Buxton DR. 2002. Switchgrass biomass production in the midwest USA: harvest and nitrogen management. Agron J 94:413–20.

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Energy Biosciences Institute and the Department of Plant Biology, University of Illinois, Urbana-Champaign, Illinois, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan H. DeLucia.

Additional information

Author Contributions

SCD, ADK, and WJP performed the research, contributed new methods and models, analyzed the data, and wrote the paper; FGD, SDG, and CMS contributed new methods and analyzed data; EHD conceived of the study and contributed to data analysis and writing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, S.C., Parton, W.J., Dohleman, F.G. et al. Comparative Biogeochemical Cycles of Bioenergy Crops Reveal Nitrogen-Fixation and Low Greenhouse Gas Emissions in a Miscanthus × giganteus Agro-Ecosystem. Ecosystems 13, 144–156 (2010). https://doi.org/10.1007/s10021-009-9306-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-009-9306-9

Keywords

Navigation