Skip to main content

Advertisement

Log in

Effects of Land-Use Change on Carbon Stocks in Switzerland

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

We assessed how consequences of future land-use change may affect size and spatial shifts of C stocks under three potential trends in policy—(a) business-as-usual: continuation of land-use trends observed during the past 15 years; (b) extensification: full extensification of open-land; and (c) liberalization: full reforestation potential. The build-up times for the three scenarios are estimated at 30, 80 and 100 years, respectively. Potential C-stock change rates are derived from the literature. Whereas the business-as-usual scenario would cause marginal changes of 0.5%, liberalization would provoke a 13% increase in C stocks (+62 MtC). Gains of 24% would be expected for forests (+95 MtC), whereas open-land C stock would decrease 27% (−33 MtC). Extensification would lead to a C stock decrease of 3% (−12 MtC). Whereas forest C is expected to increase 12% (+36.5 MtC) at high elevations, stocks of open-land C would decline 38.5% (−48.5 MtC). Most affected are unfavorable grasslands, which increase in area (+59%) but contribute only 14.5% to the C stocks. C sinks would amount to 0.6 MtC y−1 assuming a build-up time of 100 years for the liberalization scenario. C stocks on the current forest area are increasing by 1 MtC y−1. The maximal total C sink of 1.6 MtC might thus suffice to compensate for agricultural greenhouse gases (2004: 1.4 Mt CO2–C equivalents), but corresponds only to 11–13% of the anthropogenic greenhouse gas emission in Switzerland. Thus, even the largest of the expected terrestrial C stocks under liberalization will be small in comparison with current emissions of anthropogenic greenhouse gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Amman C, Flechard C, Leifeld J, Neftel A, Fuhrer J. 2007. The carbon budget of newly established temperate grassland depends on management intensity. Agriculture, Ecosystems and Environment 121: 5–20

    Article  CAS  Google Scholar 

  • Bätzig W. 1996. Landwirtschaft im Alpenraum unverzichtbar, aber zukunftslos? Eine alpenweite Bilanz der aktuellen Probleme und der möglichen Lösungen. In: Bätzig W, Ed. Landwirtschaft im Alpenraum – unverzichtbar, aber zukunftslos? Europäische Akademie Bozen, Fachbereich Alpine Umwelt. Wien: Blackwell. pp. 9–11

  • BFS. 1979/85. Arealstatistik. Bundesamt für Statistik, Servicestelle GEOSTAT, CH-Neuchatel

  • BFS. 1992/97. Arealstatistik. Bundesamt für Statistik, Servicestelle GEOSTAT, CH-Neuchatel

  • Bolliger J, Kienast F, Soliva R, Rutherford GN. 2007. Spatial sensitivity of species habitat patterns to scenarios of land-use change (Switzerland). Landscape Ecology 22:773–789

    Article  Google Scholar 

  • Böttcher J, Springob G. 2001. A carbon balance model for organic layers of acid forest soils. Journal of Plant Nutrition and Soil Science 164:399–405

    Article  Google Scholar 

  • Brassel P, Brändli UB. 1999. Schweizerisches Landesforstinventar. Ergebnisse der Zweitaufnahme 1993–1995. Birmensdorf, Eidgenössische Forschungsanstalt für Wald Schnee und Landschaft, Bern, Bundesamt für Umwelt, Wald und Landschaft

  • Ciais P, Tans PP, Trolier M, White JWC, Francey RJ. 1995. A large northern hemisphere CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science 269:1098–1101

    Article  PubMed  CAS  Google Scholar 

  • Conant RT, Paustian K, Elliott ET. 2001. Grassland management and conversion into grassland: effects on soil carbon. Ecological Applications 11:343–355

    Article  Google Scholar 

  • DeFries RS, Field CB, Fung I, Collatz GJ, Bounoua L. 1999. Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Global Biogeochemical Cycles 13:803–815

    Article  CAS  Google Scholar 

  • Dirnböck T, Dullinger S, Grabherr G. 2003. A regional impact assessment of climate and land-use change on alpine vegetation. Journal of Biogeography 30:401–417

    Article  Google Scholar 

  • Dullinger S, Dirnböck T, Grabherr G. 2003. Patterns of shrub invasion into high mountain grasslands of the Northern calcareous Alps, Austria. Arctic, Antarctic, and Alpine Research 35:434–441

    Article  Google Scholar 

  • FAL. 2001. Grundlagen der Düngung im Futter- und Ackerbau. Eidgenössische Forschungsanstalt für Agrarökologie und Landbau, Zürich-Reckenholz

  • FAO. 2003. The agricultural statistics of the Food and Agriculture Organisation of the United Nations

  • FAO. 2004. Guidelines for Country Reporting to FRA 2005, working paper 82. Rome

  • Guo LB, Gifford RM. 2002. Soil carbon stocks and land use change: a meta analysis. Global Change Biology 8:345–360

    Article  Google Scholar 

  • Hagedorn F. 2005. Carbon stocks. Forest report 2005. Facts and figures about the condition of Swiss forests. SAEFL, Swiss Federal Institute WSL, Berne, Swiss Agency for the Environment, Forest and Landscape, Birmensdorf. pp. 36–9

  • Houghton RA. 2003. Why are estimates of the terrestrial carbon balance so different? Global Change Biology 9:500–509

    Article  Google Scholar 

  • IPCC. 2001. Climate change. The IPCC third assessment report. Cambridge and New York: Cambridge University Press

  • IPCC. 2003. Good practice guidance for land use, land-use change and forestry. Intergovernmental Panel on Climate Change

  • Jandl R, Lindner M, Bauwens B, Vesterdal L, Baritz R, Hagedorn F, Johnson D, Minkkinen K, Byrne K. 2007. How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268

    Article  CAS  Google Scholar 

  • Janssens IA, Freibauer A, Ciais P, Smith P, Nabuurs G-J, Folberth G, Schlamadinger B, Hutjes RWA, Ceulemans R, Schulze E-D, Valentini R, Dolman AJ. 2003. Europe’s terrestrial biosphere absorbs 7 to 12% of European antropogenic CO2 emissions. Science 300:1538–1542

    Article  PubMed  CAS  Google Scholar 

  • Jenkinson DS. 1991. The Rothamsted long-term experiments - are they still of use. Agronomy Journal 83:2–10

    Google Scholar 

  • Kankaapää S, Carter TR. 2004. An overview of forest policies affecting land use in Europe. 706, The Finnish Environment, Finnish Environment Institute, Helsinki

  • Labaune C, Magnin F. 2002. Pastoral management vs. land abandonment in Mediterranean uplands: impact on snail communities. Global Ecology and Biogeography Letters 11:237–245

    Article  Google Scholar 

  • Laiolo P, Dondero F, Ciliento E, Rolando A. 2004. Consequences of pastoral abandonment for the structure and diversity of the alpine avifauna. Journal of Applied Ecology 41:294–304

    Article  Google Scholar 

  • Leifeld J, Bassin S, Fuhrer J. 2003. Carbon stocks and carbon sequestration potentials in agricultural soils in Switzerland. Schriftenreihe der FAL, Reckenholz 44. pp. 120

  • Leifeld J, Bassin S, Fuhrer J. 2005. Carbon stocks in Swiss agricultural soils predicted by land-use, soil characteristics, and altitude. Agriculture Ecosystems & Environment 105:255–266

    Article  CAS  Google Scholar 

  • Lindborg R, Eriksson O. 2004. Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–1845

    Article  Google Scholar 

  • Liski J, Perruchoud D, Karjalainen T. 2002. Increasing carbon stocks in the forest soils of western Europe. Forest Ecology and Management 169:159–175

    Article  Google Scholar 

  • Maurer S, Weyand A, Fischer M, Stöcklin J. 2006. Old cultural traditions, in addition to land use and topography, ar shaping plant diversity of grasslands in the Alps. Biological Conservation 130:438–445

    Article  Google Scholar 

  • Meeus J, Van Der Ploeg JD, Wijermans M. 1991. Changing agricultural landscapes in Europe: continuity, deterioration or rupture? In: IFLA conference. Rotterdam, The Netherlands

  • Perruchoud D, Kienast F, Kaufmann E, Braker OU. 1999. 20th century carbon budget of forest soils in the Alps. Ecosystems 2:320–337

    Article  CAS  Google Scholar 

  • Perruchoud D, Walthert L, Zimmermann S, Lüscher P. 2000. Contemporary carbon stocks of mineral forest soils in the Swiss Alps. Biogeochemistry 50:111–136

    Article  Google Scholar 

  • Richter DD, Markewitz D, Trumbore SE. 1999. Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 400:56–57

    Article  CAS  Google Scholar 

  • Rounsevell MDA, Annetts JE, Audsley E, Mayr T, Reginster I. 2003. Modelling the spatial distribution of agricultural land use at the regional scale. Agriculture Ecosystems and Environment 95: 465–479

    Article  Google Scholar 

  • Rounsevell MDA, Regnister I, Araujo MB, Carter TR, Dendonkner N, Ewert F, House JI, Kankaapää S, Leemans R, Metzger MJ, Schmit C, Tuck G. 2006. A coherent set of future land use change scenarios for Europe. Agriculture, Ecosystems and Environment 114:57–68

    Article  Google Scholar 

  • Rutherford GN, Zimmermann NE, Bebi P, Edwards PJ. 2008. Assessing land-use statistics to model land cover change in a mountainous landscape in the European Alps. Ecological Modelling 212:460–471

    Article  Google Scholar 

  • Schmid S, Thürig E, Kaufmann E, Lischke H, Bugmann H. 2006. Effect of forest management on future carbon pools and fluxes: A model comparison. Forest Ecology and Management 237:65–82

    Article  Google Scholar 

  • Statistisches Jahrbuch der Schweiz. 1997. Verlag Neue Zürcher Zeitung, Zürich

  • Swiss Federal Statistical Office. 2001. The changing face of land use. Land use statistics of Switzerland. Neuchatel: Geostat

    Google Scholar 

  • Tasser E, Tappeiner U. 2002. Impact of land use changes on mountain vegetation. Applied Vegetation Science 5:173–184

    Article  Google Scholar 

  • Thürig E, Palosuo T, Bucher J, Kaufmann E. 2005. The impact of windthrow on carbon sequestration in Switzerland: a model-based assessment. Forest Ecology and Management 210:337–350

    Article  Google Scholar 

  • Townsend AR, Braswell BH, Holland EA, Penner JE. 1996. Spatial and temporal patterns in potential terrestrial carbon storage resulting from deposition of fossil fuel derived nitrogen. Ecological Application 6:806–814

    Article  Google Scholar 

  • van der Vaart JHP. 2005. Towards a new rural landscape: consequences of non-agricultural re-use of redundant farm buildings in Friesland. Landscape and Urban Planning 70:143–152

    Article  Google Scholar 

  • VanMechelen L, Groenemans R, VanRanst E. 1997. Forest soil condition in Europe; results of a large-scale soil survey. Technical report. EC; UN-ECE. Brussels, Geneva: Ministry of the Flemish Community

  • Vesterdal L, Ritter E, Gundersen P. 2002. Change in soil organic carbon following afforestation of former arable land. Forest Ecology and Management 169:137–147

    Article  Google Scholar 

  • Vorreiter L. 1949. Holztechnisches Handbuch, Band I: Allgemeines, Holzkunde, Holzschutz und Holzvergütung. Verlag Georg Fromme & Co, Wien

    Google Scholar 

Download references

Acknowledgements

The authors thank Peter Pearman for carefully commenting and editing the article. Two anonymous reviewers strongly improved the manuscript with helpful suggestions and comments. This research was supported by the BioScene project funded by the European Union (EVK2-2001-00354).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janine Bolliger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolliger, J., Hagedorn, F., Leifeld, J. et al. Effects of Land-Use Change on Carbon Stocks in Switzerland. Ecosystems 11, 895–907 (2008). https://doi.org/10.1007/s10021-008-9168-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-008-9168-6

Keywords

Navigation