Skip to main content

Advertisement

Log in

Coupling Nutrient Uptake and Energy Flow in Headwater Streams

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Nutrient cycling and energy flow in ecosystems are tightly linked through the metabolic processes of organisms. Greater uptake of inorganic nutrients is expected to be associated with higher rates of metabolism [gross primary production (GPP) and respiration (R)], due to assimilatory demand of both autotrophs and heterotrophs. However, relationships between uptake and metabolism should vary with the relative contribution of autochthonous and allochthonous sources of organic matter. To investigate the relationship between metabolism and nutrient uptake, we used whole-stream and benthic chamber methods to measure rates of nitrate–nitrogen (NO3–N) uptake and metabolism in four headwater streams chosen to span a range of light availability and therefore differing rates of GPP and contributions of autochthonous carbon. We coupled whole-stream metabolism with measures of NO3–N uptake conducted repeatedly over the same stream reach during both day and night, as well as incubating benthic sediments under both light and dark conditions. NO3–N uptake was generally greater in daylight compared to dark conditions, and although day-night differences in whole-stream uptake were not significant, light–dark differences in benthic chambers were significant at three of the four sites. Estimates of N demand indicated that assimilation by photoautotrophs could account for the majority of NO3–N uptake at the two sites with relatively open canopies. Contrary to expectations, photoautotrophs contributed substantially to NO3–N uptake even at the two closed-canopy sites, which had low values of GPP/R and relied heavily on allochthonous carbon to fuel R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM. 1989. Nitrogen saturation in northern forest ecosystems. Bioscience 39:378–86

    Article  Google Scholar 

  • Abrol YP, Sawhney SK, Naik MS. 1983. Light and dark assimilation of nitrate in plants. Plant Cell Environ 6:595–9

    CAS  Google Scholar 

  • Alexander RB, Smith RA, Schwarz GE. 2000. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature 403:758–61

    Article  PubMed  CAS  Google Scholar 

  • APHA, AWWA, and WEF. 1992. Standard Methods for the Examination of Water and Wastewater, 18th ed. Washington, (DC): American Public Health Association

    Google Scholar 

  • Baker MA, Valett HM, Dahm CN. 2000. Organic carbon supply and metabolism in a shallow groundwater ecosystem. Ecology 81:3133–48

    Article  Google Scholar 

  • Beck WS, Liemn KF, Simpson GG. 1991. Life: an introduction to biology. New York: Harper Collins Publishers

    Google Scholar 

  • Bernhardt ES, Likens GE. 2002. Dissolved organic carbon enrichment alters nitrogen dynamics in a forest stream. Ecology 83:1689–700

    Google Scholar 

  • Bernhardt ES, Hall RO, Likens GE. 2002. Whole-system estimates of nitrification and nitrate uptake in streams of the Hubbard Brook Experimental Forest. Ecosystems 5:419–30

    Article  CAS  Google Scholar 

  • Bernhardt ES, Likens GE, Hall RO, Buso DC, Fisher SG, Burton TM, Meyer JL, McDowell MH, Mayer MS, Bowden WB, Findlay SEG, Macneale KH, Stelzer RS, Lowe WH. 2005. Can’t see the forest for the stream? – In-stream processing and terrestrial nitrogen exports. Bioscience 55:219–30

    Article  Google Scholar 

  • Bott TL, Brock JT, Cushing CE, Gregory SV, King D, Petersen RC. 1978. A comparison of methods for measuring primary productivity and community respiration in streams. Hydrobiologia 60:3–12

    Article  CAS  Google Scholar 

  • Davis JC, Minshall GW. 1999. Nitrogen and phosphorus uptake in two Idaho (USA) headwater wilderness streams. Oecologia 119:247–55

    Article  Google Scholar 

  • Dodds WK, Priscu JC. 1990. A comparison of methods for assessment of nutrient deficiency of phytoplankton in a large oligotrophic lake. Can J Fish Aquat Sci 47:2328–38

    Article  Google Scholar 

  • Dodds WK, Marti E, Tank JL, Pontius J, Hamilton SK, Grimm NB, Bowden WB, McDowell WH, Peterson BJ, Valett HM, Webster JR, Gregory S. 2004. Carbon and nitrogen stoichiometry and nitrogen cycling rates in streams. Oecologia 140:458–67

    Article  PubMed  Google Scholar 

  • Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH. 1996. Organism size, life history, and N:P stoichiometry: toward a unified view of cellular and ecosystem processes. Bioscience 46:674–84

    Article  Google Scholar 

  • Elwood JW, Newbold JS, O’Neill RV, Winkle WV. 1983. Resource spiraling: an operational paradigm for analyzing lotic ecosystems. In: Fontaine TD III, Bartell SM, Eds. Dynamics of lotic ecosystems. Ann Arbor (Michigan): Ann Arbor Science

  • Fellows CS. 2000. Ecosystem metabolism and nitrate retention in headwater streams. PhD thesis, Albuquerque: University of New Mexico

  • Fellows CS, Valett HM, Dahm CN. 2001. Whole-stream metabolism in two montane streams: Contribution of the hyporheic zone. Limnol Oceanogr 46:523–31

    Article  Google Scholar 

  • Fisher SG, Likens GE. 1973. Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecol Monogr 43:421–39

    Article  Google Scholar 

  • Fisher SG, Gray LJ, Grimm NB, Busch DE. 1982. Temporal succession in a desert stream ecosystem following flash flooding. Ecol Monogr 52:93–110

    Article  CAS  Google Scholar 

  • del Giorgio PA, Cole JJ. 1998. Bacterial growth efficiency in natural aquatic systems. Ann Rev Ecol Syst 29:503–41

    Article  Google Scholar 

  • Gordon ND, McMahon TA, Finlayson BL. 1992. Stream hydrology: an introduction for ecologists. New York: Wiley

    Google Scholar 

  • Grimm NB. 1985. Roles of primary producers and consumers in nitrogen dynamics of a desert stream ecosystem. PhD Dissertation. Tempe (Arizona): Arizona State University

  • Grimm NB. 1987. Nitrogen dynamics during succession in a desert stream. Ecology 68:1157–70

    Article  CAS  Google Scholar 

  • Grimm NB, Fisher SG. 1984. Exchange between interstitial and surface-water: implications for stream metabolism and nutrient cycling. Hydrobiologia 111:219–28

    Article  CAS  Google Scholar 

  • Gulis V, Suberkropp K. 2003. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter. Microb Ecol 45:11–9

    Article  PubMed  CAS  Google Scholar 

  • Hall RO Jr, Tank JL. 2003. Ecosystem metabolism controls nitrogen uptake in streams in Grand Teton National Park, Wyoming. Limnol Oceanogr 48:1120–8

    Article  CAS  Google Scholar 

  • Hall RO Jr, Bernhardt ES, Likens GE. 2002. Relating nutrient uptake with transient storage in forested mountain streams. Limnol Oceanogr 47:255–65

    Article  CAS  Google Scholar 

  • Hedin LO, von Fischer JC, Ostrom NE, Kennedy BP, Brown MG, Robertson GP. 1998. Thermodynamic constraints on nitrogen transformations and other biogeochemical processes at soil-stream interfaces. Ecology 79:684–703

    Article  Google Scholar 

  • Hill WR, Mulholland PJ, Marzolf ER. 2001. Stream ecosystem responses to forest leaf emergence in spring. Ecology 82:2306–19

    Article  Google Scholar 

  • Huppe HC, Turpin DH. 1994. Integration of carbon and nitrogen metabolism in plant and algal cells. Ann Rev Plant Physiol Plant Mol Biol 45:577–607

    Article  CAS  Google Scholar 

  • Martí E, Armengol J, Sabater S. 1994. Day and night nutrient uptake differences in a calcareous stream. Verhandlungen der Internationale Vereinigung für theoretische und angewandte Limnologie 25:1756–60

    Google Scholar 

  • Marzolf ER, Mulholland PJ, Steinman AD. 1994. Improvements to the diurnal upstream-downstream dissolved-oxygen change technique for determining whole-stream metabolism in small streams. Can J Fish Aquat Sci 51:1591–9

    Article  Google Scholar 

  • McCutchan JH Jr, Saunders JF III, Lewis WM Jr, Hayden MG. 2002. Effects of groundwater flux on open-channel estimates of stream metabolism. Limnol Oceanogr 47:321–4

    Article  Google Scholar 

  • McCutchan JH, Lewis WM, Saunders JF. 1998. Uncertainty in the estimation of stream metabolism from open-channel oxygen concentrations. J North Am Benthol Soc 17:155–64

    Article  Google Scholar 

  • Meyer JL. 1989. Can P/R ratio be used to assess the food base of stream ecosystems? A comment on Rosenfeld and Mackay (1987). Oikos 54:119–21

    Google Scholar 

  • Meyer JL, Edwards RT. 1990. Ecosystem metabolism and turnover of organic-carbon along a blackwater river continuum. Ecology 71:668–77

    Article  CAS  Google Scholar 

  • Minshall GW. 1978. Autotrophy in stream ecosystems. Bioscience 28:767–70

    Article  Google Scholar 

  • Minshall GW, Petersen RC, Cummins KW, Bott TL, Sedell JR, Cushing CE, Vannote RL. 1983. Interbiome comparison of stream ecosystem dynamics. Ecol Monogr 53:1–25

    Article  Google Scholar 

  • Mulholland PJ. 1992. Regulation of nutrient concentrations in a temperate forest stream: roles of upland, riparian, and instream processes. Limnol Oceanogr 37:1512–26

    CAS  Google Scholar 

  • Mulholland PJ. 2004. The importance of in-stream uptake for regulating stream concentrations and outputs of N and P from a forested watershed: evidence from long-term chemistry records for Walker Branch Watershed. Biogeochemistry 70:403–26

    Article  CAS  Google Scholar 

  • Mulholland PJ, Marzolf ER, Webster JR, Hart DR, Hendricks SP. 1997. Evidence that hyporheic zones increase heterotrophic metabolism and phosphorus uptake in forest streams. Limnol Oceanogr 42:443–51

    CAS  Google Scholar 

  • Mulholland PJ, Fellows CS, Tank JL, Grimm NB, Webster JR, Hamilton SK, Marti E, Ashkenas L, Bowden WB, Dodds WK, McDowell WH, Paul MJ, Peterson BJ. 2001. Inter-biome comparison of factors controlling stream metabolism. Freshw Biol 46:1503–17

    Article  CAS  Google Scholar 

  • Mulholland PJ, Valett HM, Webster JR, Thomas SA, Cooper LW, Hamilton SK, Peterson BJ. 2004. Stream denitrification and total nitrate uptake rates measured using a field N-15 tracer addition approach. Limnol Oceanogr 49:809–20

    Article  CAS  Google Scholar 

  • Naegeli MW, Uehlinger U. 1997. Contribution of the hyporheic zone to ecosystem metabolism in a prealpine gravel-bed river. J North Am Benthol Soc 16:794–804

    Article  Google Scholar 

  • Nealson KH, Stahl DH. 1997. Microorganisms and biogeochemical cycles: What can we learn from layered microbial communities? In: Banfield JF, Nealson KH, Eds. Geomicrobiology: interactions between microbes and minerals. Washington, (DC): Mineralogical Society of America. p 5–34

    Google Scholar 

  • Newbold JD, Elwood JW, O’Neill RV, Vanwinkle W. 1981. Measuring nutrient spiralling in streams. Can J Fish Aquat Sci 38:860–3

    Article  Google Scholar 

  • Odum HT. 1956. Primary production in flowing waters. Limnol Oceanogr 1:103–17

    Google Scholar 

  • Odum HT. 1957. Trophic structure and productivity of Silver Springs, Florida. Ecol Monogr 27:55–112

    Article  Google Scholar 

  • Peterson BJ, Wollheim WM, Mulholland PJ, Webster JR, Meyer JL, Tank JL, Marti E, Bowden WB, Valett HM, Hershey AE, McDowell WH, Dodds WK, Hamilton SK, Gregory S, Morrall DJ. 2001a. Control of nitrogen export from watersheds by headwater streams. Science 292:86–90

    Article  CAS  Google Scholar 

  • Peterson CG, Horton MA, Marshall MC, Valett HM, Dahm CN. 2001b. Spatial and temporal variation in the influence of grazing macroinvertebrates on epilithic algae in a montane stream. Archiv für Hydrobiologie 153:29–54

    Google Scholar 

  • Peterson CG, Valett HM, Dahm CN. 2001c. Shifts in habitat templates for lotic microalgae linked to interannual variation in snowmelt intensity. Limnol Oceanogr 46:858–70

    Article  Google Scholar 

  • Poff NL, Ward JV. 1989. Implications of streamflow variability and predictability for lotic community structure: a regional-analysis of streamflow patterns. Can J Fish Aquat Sci 46:1805–18

    Google Scholar 

  • Redfield AC. 1958. The biological control of chemical factors in the environment. Am Sci 46:205–21

    CAS  Google Scholar 

  • Reiners WA. 1986. Complementary models for ecosystems. Am Nat 127:59–73

    Article  Google Scholar 

  • Romani AM, Butturini A, Sabater F, Sabater S. 1998. Heterotrophic metabolism in a forest stream sediment: surface versus subsurface zones. Aquat Microb Ecol 16:143–51

    Google Scholar 

  • Rosenfeld JS, Mackay RJ. 1987. Assessing the food base of stream ecosystems: alternatives to the P/R ratio. Oikos 50:141–7

    Google Scholar 

  • SAS. 1999. The SAS System for Windows, Version 8. Cary (North Carolina): SAS Institute

    Google Scholar 

  • Schlesinger WH. 1997. Biogeochemistry: an analysis of global change, 2nd ed. San Diego: Academic Press

    Google Scholar 

  • Smith RA, Alexander RB, Wolman MG. 1987. Water-quality trends in the nations rivers. Science 235:1607–15

    CAS  PubMed  Google Scholar 

  • Sterner RW, Elser JJ. 2002. Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton (New Jersey): Princeton University Press

    Google Scholar 

  • Sterner RW, Elser JJ, Fee EJ, Guildford SJ, Chrzanowski TH. 1997. The light:nutrient ratio in lakes: the balance of energy and materials affects ecosystem structure and process. Am Nat 150:663–84

    Article  PubMed  CAS  Google Scholar 

  • Strauss EA, Lamberti GA. 2000. Regulation of nitrification in aquatic sediments by organic carbon. Limnol Oceanogr 45:1854–9

    Article  Google Scholar 

  • Strauss EA, Lamberti GA. 2002. Effect of dissolved organic carbon quality on microbial decomposition and nitrification rates in stream sediments. Freshw Biol 47:65–74

    Article  CAS  Google Scholar 

  • Stream Solute Workshop. 1990. Concepts and methods for assessing solute dynamics in stream ecosystems. J North Am Benthol Soc 9:95–119

    Article  Google Scholar 

  • Suberkropp K. 1998. Effect of dissolved nutrients on two aquatic hyphomycetes growing on leaf litter. Mycol Res 102:998–1002

    Article  CAS  Google Scholar 

  • Triska FJ, Kennedy VC, Avanzino RJ, Zellweger GW, Bencala KE. 1989. Retention and transport of nutrients in a 3rd-order stream: channel processes. Ecology 70:1877–92

    Article  Google Scholar 

  • Valett HM, Crenshaw CL, Wagner PF. 2002. Stream nutrient uptake, forest succession, and biogeochemical theory. Ecology 83:2888–901

    Article  Google Scholar 

  • Valett HM, Morrice JA, Dahm CN, Campana ME. 1996. Parent lithology, surface-groundwater exchange, and nitrate retention in headwater streams. Limnol Oceanogr 41:333–45

    Article  CAS  Google Scholar 

  • Vitousek PM, Howarth RW. 1991. Nutrient limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG. 1997. Human alteration of the global nitrogen cycle: Sources and consequences. Ecol Appl 7:737–50

    Google Scholar 

  • Webster JR, Patten BC. 1979. Effects of watershed perturbation on stream potassium and calcium dynamics. Ecol Monogr 49:51–72

    Article  CAS  Google Scholar 

  • Webster JR, Meyer JL. 1997. Stream organic matter budgets. J North Am Benthol Soc 16:3–161

    Article  Google Scholar 

  • Webster JR, D’Angelo DJ, Peters GT. 1991. Nitrate and phosphate uptake in streams at Coweeta Hydrologic Laboratory. Verhandlungen der Internationale Vereinigung für theoretische und angewandte Limnologie 24:1681–6

    CAS  Google Scholar 

  • Webster JR, Mulholland PJ, Tank JL, Valett HM, Dodds WK, Peterson BJ, Bowden WB, Dahm CN, Findlay S, Gregory SV, Grimm NB, Hamilton SK, Johnson SL, Marti E, McDowell WH, Meyer JL, Morrall DD, Thomas SA, Wollheim WM. 2003. Factors affecting ammonium uptake in streams – an inter-biome perspective. Freshw Biol 48:1329–52

    Article  CAS  Google Scholar 

  • Wetzel RG, Likens GE. 1991. Limnological analyses, 2nd edn. Berlin Heidelberg New York: Springer

    Google Scholar 

  • Young RG, Huryn AD. 1998. Comment: improvements to the diurnal upstream-downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Can J Fish Aquat Sci 55:1784–5

    Article  CAS  Google Scholar 

  • Young RG, Huryn AD. 1999. Effects of land use on stream metabolism and organic matter turnover. Ecol Appl 9:1359–76

    Google Scholar 

Download references

Acknowledgements

For unflagging assistance in field and lab work, we thank Jim Thibault, Chelsea Crenshaw, Chris Thomas, Andrea Shriver, Michelle Baker, John Craig, Todd Royer, Laura Bean, Doug Moyer, John Morrice, Miranda Fleig, and Diana Northup. Special thanks to P. Valero and A. Bearce for access to the New Mexico sites. Comments from Nancy Grimm, Wade Hadwen, and two anonymous reviewers improved the manuscript. Funding for this research was provided by NSF DEB grants 9902324 to C.N.D. and C.S.F, 9815868 to H.M.V. and P.J.M., 9816087 to C.N.D and P. Unnikrishna, 9420510 to H.M.V. and M.E. Campana, and a NSF Graduate Fellowship to C.S.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Fellows.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fellows, C.S., Valett, H.M., Dahm, C.N. et al. Coupling Nutrient Uptake and Energy Flow in Headwater Streams. Ecosystems 9, 788–804 (2006). https://doi.org/10.1007/s10021-006-0005-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-006-0005-5

Keywords

Navigation