Skip to main content
Log in

Relation between morphology and conductivity in TiO2 nanotube arrays: an electrochemical impedance spectrometric investigation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Two types of TiO2 nanotubular arrays were obtained by anodisation of a titanium foil, in two different solutions containing fluoride ions. For the first type which has rough tube walls, impedance measurements in the dark showed the presence of a localised surface state which was related to adsorbed molecular water. Under UV illumination, this adsorbed molecular water was photo-dissociated. Moreover, an increase of 2 orders of magnitude for the limiting capacitance of the space charge layer was observed, simultaneously with the disappearance of the localised state and with a 100-time increase of the carrier density associated with hydrogen insertion. The second type of layer was characterised by smoother tube walls, a high doping level (1020 cm−3) in the dark, a lack of localised states and no long-lasting photo-induced effect. In this case, the width of the space charge layer became rapidly higher than the half-thickness of the tube walls, when the applied potential increased. Therefore, the walls were progressively depleted under anodic polarisation, passing from a situation where the tubes were totally active in the cathodic range towards a situation where the contribution of the tube walls could be neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gong D, Grimes CA, Varghese OK, Hu WC, Singh RS, Chen Z, Dickey EC (2001) J Mater Res 16:3331–3334

    Article  CAS  Google Scholar 

  2. Pu P, Cachet H, Sutter EMM (2010) Electrochim Acta 55:5938–5946

    Article  CAS  Google Scholar 

  3. Nishikiori H, Qian W, El-Sayed MA, Tanaka N, Fujii T (2007) J Phys Chem C 111:9008–9011

    Article  CAS  Google Scholar 

  4. Kondo JN, Domen K (2008) Chem Mat 20:835–847

    Article  CAS  Google Scholar 

  5. Varghese OK, Gong D, Paulose M, Ong KG, Dickey EC, Grimes CA (2003) Adv Mater 15:624–627

    Article  CAS  Google Scholar 

  6. Mor GK, Varghese OK, Paulose M, Ong KG, Grimes CA (2006) Thin Solid Films 496:42–48

    Article  CAS  Google Scholar 

  7. Varghese OK, Grimes CA (2003) J Nanosci Nanotechnol 3:277–293

    Article  CAS  Google Scholar 

  8. Balaur E, Macak JM, Tsuchiya H, Schmuki P (2005) J Mater Chem 15:4488–4491

    Article  CAS  Google Scholar 

  9. Shankar K, Mor GK, Paulose M, Varghese OK, Grimes CA (2008) J Non-Cryst Solids 354:2767–2771

    Article  CAS  Google Scholar 

  10. Sun WT, Yu Y, Pan HY, Gao XF, Chen Q, Peng LM (2008) J Am Chem Soc 130:1124–1125

    Article  CAS  Google Scholar 

  11. Albu SP, Ghicov A, Macak JM, Hahn R, Schmuki P (2007) Nano Lett 7:1286–1289

    Article  CAS  Google Scholar 

  12. Zhang ZH, Yuan Y, Shi GY, Fang YJ, Liang LH, Ding HC, Jin LT (2007) Environ Sci Technol 41:6259–6263

    Article  CAS  Google Scholar 

  13. Atyaoui A, Bousselmi L, Cachet H, Pu P, Sutter EMM (2011) J Photochem Photobiol A 224:71–79

    Article  CAS  Google Scholar 

  14. Chen SG, Paulose M, Ruan C, Mor GK, Varghese OK, Grimes CA (2006) J Photochem Photobiol A 177:177–184

    Article  CAS  Google Scholar 

  15. Seabold JA, Shankar K, Wilke RHT, Paulose M, Varghese OK, Grimes CA, Choi KS (2008) Chem Mater 20:5266–5273

    Article  CAS  Google Scholar 

  16. Mazare A, Paramasivam I, Lee K, Schmuki P (2011) Electrochem Commun 13:1030–1034

    Article  CAS  Google Scholar 

  17. Hoyer P (1996) Langmuir 12:1411–1413

    Article  CAS  Google Scholar 

  18. Shinggubara S (2003) J Nano Res 5:17–30

    Article  Google Scholar 

  19. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Langmuir 14:3160–3163

    Article  CAS  Google Scholar 

  20. Adachi M, Murata Y, Okada I, Yoshikawa Y (2003) J Electrochem Soc 150:G488–G493

    Article  CAS  Google Scholar 

  21. Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P (2007) Curr Opin Solid State Mater Sci 11:3–18

    Article  CAS  Google Scholar 

  22. Ruan C, Paulose M, Varghese OK, Grimes CA (2006) Sol Energy Mater Sol Cells 90:1283–1295

    Article  CAS  Google Scholar 

  23. Tsuchiya H, Macak JM, Taveira L, Balaur E, Ghicov A, Sirotna K, Schmuki P (2005) Electrochem Commun 7:576–580

    Article  CAS  Google Scholar 

  24. Taveira L, Sagüés A, Macak JM, Schmuki P (2008) J Electrochem Soc 155:C293–C302

    Article  CAS  Google Scholar 

  25. Fabregat-Santiago F, Barea EM, Bisquert J, Mor GK, Shankar K, Grimes CA (2008) J Am Chem Soc 130:11312–11316

    Article  CAS  Google Scholar 

  26. Prakasam HE, Shankar K, Paulose M, Varghese OK, Grimes CA (2007) J Phys Chem C 111:7235–7241

    Article  CAS  Google Scholar 

  27. Paulose M, Shankar K, Yoriya S, Prakasam HE, Varghese OK, Mor GK, Latempa TJ, Fitzgerald A, Grimes CA (2006) J Phys Chem B 110:16179–16184

    Article  CAS  Google Scholar 

  28. Gong X, Selloni A, Batzill M, Diebold U (2006) Nat Mater 5:665–670

    Article  CAS  Google Scholar 

  29. Gong X, Selloni A (2007) J Catal 249:134–139

    Article  CAS  Google Scholar 

  30. Paulose M, Shankar K, Varghese OK, Mor GK, Hardin B, Grimes CA (2006) Nanotechnology 17:1446–1448

    Article  CAS  Google Scholar 

  31. Paulose M, Varghese OK, Mor GK, Grimes CA, Ong KG (2006) Nanotechnology 17:398–402

    Article  CAS  Google Scholar 

  32. Van de Krol R, Goossens A, Schoonman J (1997) J Electrochem Soc 144:1723–1727

    Article  Google Scholar 

  33. Hafidi K, Azizan M, Ijdiyaou Y, Ameziane EL (2004) Act Passive Electron Compon 27:169–181

    Article  Google Scholar 

  34. Brug GJ, Van Den Eeden ALG, Sluyters-Rehbach M, Sluyters GH (1984) J Electroanal Chem 176:275–295

    Article  CAS  Google Scholar 

  35. Bisquert J (2008) Phys Chem Chem Phys 10:49–72

    Article  CAS  Google Scholar 

  36. Bisquert J, Fabregat-Santiago F, Mora-Seró I, Garcia-Belmonte G, Barea EM, Palomares M (2008) Inorg Chim Acta 361:684–698

    Article  CAS  Google Scholar 

  37. Haque SA, Tachibana Y, Willis RL, Moser JE, Grätzel M, Klug DR, Durrant JR (2008) J Phys Chem B 104:538–547

    Article  Google Scholar 

  38. Yang J, Warren DS, Keith Gordon C, McQuillan AJ (2007) J Appl Phys 101:023714

    Article  Google Scholar 

  39. Savory DM, Warren DS, McQuillan AJ (2011) J Phys Chem C 115:902–907

    Article  CAS  Google Scholar 

  40. Chen WP, Wang Y, Chan HLW (2008) Appl Phys Lett 92:112907

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. M. Sutter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pu, P., Cachet, H., Ngaboyamahina, E. et al. Relation between morphology and conductivity in TiO2 nanotube arrays: an electrochemical impedance spectrometric investigation. J Solid State Electrochem 17, 817–828 (2013). https://doi.org/10.1007/s10008-012-1931-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1931-0

Keywords

Navigation