Skip to main content
Log in

Preparation of electrochemically reduced graphene oxide-modified electrode and its application for determination of p-aminophenol

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A simple and eco-friendly electrochemical method to reduce graphene oxide precursor was employed for fabrication of graphene sheets modified glassy carbon electrode, and then, the resulting electrode [electrochemically reduced graphene oxide (ERGO)/glassy carbon electrode (GCE)] was used to determine p-aminophenol. The experimental results demonstrated that the modified electrode exhibited excellent electrocatalytic activity toward the redox of p-aminophenol as evidenced by the significant enhancement of redox peak currents and the decreased peak-to-peak separation in comparison with a bare GCE. A highly sensitive and selective voltammetry determination of p-aminophenol is developed using the ERGO/GCE. This method has been applied for the direct determination of p-aminophenol in artificial wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yesilada A, Erdogan H, Ertan M (1991) Anal Lett 24:129–138

    Article  CAS  Google Scholar 

  2. The European Pharmacopeial Convention (2007) The Sixth Edition European Pharmacopoeia, pp.49

  3. Chen X, Parker SG, Zou G, Su W, Zhang Q (2010) ACS Nano 4:6387–6394

    Article  CAS  Google Scholar 

  4. Monser L, Darghouth F (2002) J Pharm Biomed Anal 27:851–860

    Article  CAS  Google Scholar 

  5. Pumera M, Llopis X, Merkoci A, Alegret S (2006) Microchim Acta 152:261–265

    Article  CAS  Google Scholar 

  6. Mohamed F, AbdAllah M, Shammat S (1997) Talanta 44:61–68

    Article  CAS  Google Scholar 

  7. Wang Z, Zhu H, Zhang H, Gao G, Sun Z, Liu H, Zhao X (2009) Electrochimi Acta 54:7531–7535

    Article  CAS  Google Scholar 

  8. Jamal M, Sarac AS, Magner E (2004) Sensor Actuat B-Chem 97:59–66

    Article  Google Scholar 

  9. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  10. Huang X, Qi X, Boey F, Zhang H (2012) Chem Soc Rev 41:666–686

    Article  CAS  Google Scholar 

  11. Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Small 7:1876–1902

    Article  CAS  Google Scholar 

  12. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Electroanalysis 22:1027–1036

    Article  CAS  Google Scholar 

  13. Chen D, Tang L, Li J (2010) Chem Soc Rev 39:3157–3180

    Article  CAS  Google Scholar 

  14. Shang NG, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi SS, Marchetto H (2008) Adv Funct Mater 18:3506–3514

    Article  CAS  Google Scholar 

  15. Li J, Guo S, Zhai Y, Wang E (2009) Electrochem Commun 11:1085–1088

    Article  CAS  Google Scholar 

  16. Li J, Guo S, Zhai Y, Wang E (2009) Anal Chim Acta 649:196–201

    Article  CAS  Google Scholar 

  17. Kang X, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Talanta 81:754–759

    Article  CAS  Google Scholar 

  18. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia YY, Wu Y, Nguyen ST, Ruoff RS (2007) Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  19. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Nat Nanotechnol 3:101–105

    Article  CAS  Google Scholar 

  20. Si Y, Samulski ET (2008) Nano Lett 8:1679–1682

    Article  CAS  Google Scholar 

  21. Guo HL, Wang XF, Qian QY, Wang FB, Xia XH (2009) ACS Nano 3:2653–2659

    Article  CAS  Google Scholar 

  22. Wang Z, Zhou X, Zhang J, Boey F, Zhang H (2009) J Phys Chem C 113:14071–14075

    Article  CAS  Google Scholar 

  23. Zhou M, Wang Y, Zhai Y, Zhai J, Ren W, Wang F, Dong S (2009) Chem Eur J 15:6116–6120

    Article  CAS  Google Scholar 

  24. Wang Z, Zhang J, Chen P, Zhou X, Yang Y, Wu S, Niu L, Han Y, Wang L, Chen P, Boey F, Zhang Q, Liedberg B, Zhang H (2011) Biosens Bioelectron 26:3881–3886

    Article  CAS  Google Scholar 

  25. Uhm S, Tuyen NH, Lee J (2011) Electrochem Commun 13:677–680

    Article  CAS  Google Scholar 

  26. Zhou YG, Chen JJ, Wang FB, Sheng ZH, Xia XH (2010) Chem Commun 46:5951–5953

    Article  CAS  Google Scholar 

  27. Zhu C, Guo S, Fang Y, Han L, Wang E, Dong S (2011) Nano Res 4:648–657

    Article  CAS  Google Scholar 

  28. Feng XM, Li RM, Ma YW, Chen RF, Shi NE, Fan QL, Huang W (2011) Adv Funct Mater 21:2989–2996

    Article  CAS  Google Scholar 

  29. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Chem Mater 11:771–778

    Article  CAS  Google Scholar 

  30. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  31. Wu H, Wang J, Kang X, Wang C, Wang D, Liu J, Aksay IA, Lin Y (2009) Talanta 80:403–406

    Article  CAS  Google Scholar 

  32. Wang C, Zhang L, Guo Z, Xu J, Wang H, Zhai K, Zhuo X (2010) Microchim Acta 169:1–6

    Article  CAS  Google Scholar 

  33. Wang Y, Li Y, Tang L, Lu J, Li J (2009) Electrochem Commun 11:889–892

    Article  CAS  Google Scholar 

  34. Zhou M, Zhai Y, Dong S (2009) Anal Chem 81:5603–5613

    Article  CAS  Google Scholar 

  35. Yin H, Ma Q, Zhou Y, Ai S, Zhu L (2010) Electrochimi Acta 55:7102–7108

    Article  CAS  Google Scholar 

  36. Wang Z, Li S, Lv Q (2007) Sensor Actuat B-Chem 127:420–425

    Article  Google Scholar 

  37. Liu AL, Zhang SB, Chen W, Lin XH, Xia XH (2008) Biosens Bioelectron 23:1488–1495

    Article  CAS  Google Scholar 

  38. Liu X, Li Y, Liu X, Zeng X, Kong B, Luo S, Wei W (2011) J Solid State. Electrochem. doi:10.1007/s10008-011-1428-2

Download references

Acknowledgments

We would like to acknowledge the financial support from the National Natural Science Foundation of China (No. 21105002), Anyang Technology Research Program (No 208), and the Innovative Foundation for the college students of Anyang Normal University (ASCX/2011-Z12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-juan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Sj., Deng, DH., Pang, H. et al. Preparation of electrochemically reduced graphene oxide-modified electrode and its application for determination of p-aminophenol. J Solid State Electrochem 16, 2883–2889 (2012). https://doi.org/10.1007/s10008-012-1720-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1720-9

Keywords

Navigation