Skip to main content
Log in

Anomalous codeposition of cobalt and ruthenium from chloride–sulfate baths

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Codeposition of Ru and Co was studied at room temperature and at 50 °C with various Ru3+ and Co2+ concentrations in the electrolyte. The codeposition of Co and Ru proved to be anomalous since no pure Ru could be obtained in the presence of Co2+ in the electrolyte, but a significant Co incorporation into the deposit was detected at potentials where the deposition of pure Co was not possible. The composition of the deposits varied monotonously with the change of the concentration ratio of Co2+ and Ru3+. The deposition of Ru was much hindered, and the current efficiency was a few percent only when the molar fraction of Co in the deposit was low. Continuous deposits could be obtained only when the molar fraction of Co in the deposit was at least 40 at.%. The deposit morphology was related to the molar fraction of Co in the deposit. The X-ray diffractograms are in conformity with a hexagonal close-packed alloy and indicate the formation of nanocrystalline deposits. Two-pulse plating did not lead to a multilayer but to a Co-rich alloy. Magnetoresistance of the samples decreased with increasing Ru content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cavallotti PL, Bestetti M, Franz S (2003) Electrochim Acta 48:3013–3020

    Article  CAS  Google Scholar 

  2. Wang F, Hosoiri K, Doi S, Okamoto N, Kuzushima T, Totsuka T, Watanabe T (2004) Electrochem Commun 6:1149–1152

    Article  CAS  Google Scholar 

  3. Zana I, Zangari G, Shamsuzzoha M (2005) J Magn Magn Mater 292:266–280

    Article  CAS  Google Scholar 

  4. Jeong GH, Lee CH, Jang JH, Park NJ, Suh SJ (2008) J Magn Magn Mater 320:2985–2987

    Article  CAS  Google Scholar 

  5. Cortés M, Gómez E, Vallés E (2010) Electrochem Commun 12:132–136

    Article  Google Scholar 

  6. Rožman KŽ, Kovač J, McGuiness PJ, Samardžija Z, Markoli B, Kobe S (2010) Thin Solid Films 518:1751–1755

    Article  Google Scholar 

  7. Huang Q, Bonhote C, Lam J, Romankiw LR (2007) ECS Trans 3:61–69

    Article  CAS  Google Scholar 

  8. Yasin HM, Denuault G, Pletcher D (2009) J Electroanal Chem 633:327–332

    Article  CAS  Google Scholar 

  9. Safranek WH (1974) The properties of electrodeposited metals and alloys—a handbook, American Elsevier Publishing, New York, Chapter 15, pp. 369–374

  10. Reid FH, Blake JC (1961) Trans Inst Met Finish 38:45–51

    CAS  Google Scholar 

  11. Szabó S, Bakos I (1987) J Electroanal Chem 230:233–240

    Article  Google Scholar 

  12. Vuković M, Čukman D (1999) J Electroanal Chem 474:167–173

    Article  Google Scholar 

  13. Juzikis P, Gudavičiūtė L, Matulionis E (1995) Platinum Metals Review 39:68–71

    CAS  Google Scholar 

  14. Juzikis P, Gudavičiūtė L, Messmer A, Kittel MU (1997) J Appl Electrochem 27:991–994

    Article  CAS  Google Scholar 

  15. Bakonyi I, Tóth-Kádár E, Tóth J, Kiss LF, Pogány L, Cziráki Á, Ulhaq-Bouillet C, Pierron-Bohnes V, Dinia A, Arnold B, Wetzig K (2002) Europhys Lett 58:408–414

    Article  CAS  Google Scholar 

  16. Bakonyi I, Tóth-Kádár E, Cziráki Á, Tóth J, Kiss LF, Ulhaq-Bouillet C, Pierron-Bohnes V, Dinia A, Arnold B, Wetzig K, Santiago P, Yacamáne MJ (2002) J Electrochem Soc 149:C469–C473

    Article  CAS  Google Scholar 

  17. Parkin SSP (1991) Phys Rev Lett 67:3598–3601

    Article  CAS  Google Scholar 

  18. Parkin SSP, More N, Roche KP (1990) Phys Rev Lett 64:2304–2307

    Article  CAS  Google Scholar 

  19. Bloemen PH, Kesteren HW, Swagten HJM, de Jone WJM (1994) Phys Rev B 50:13505–13514

    Article  CAS  Google Scholar 

  20. Zoll S, Dinia A, Jay JP, Meny C, Pan GZ, Michel A, El Chahal L, Pierron-Bohnes V, Panissod P, Van den Berg HAM (1998) Phys Rev B 57:4842–4848

    Article  CAS  Google Scholar 

  21. Massalski TB (ed.) Binary alloy phase diagrams, 2nd edn. plus updates on CD-ROM, ASM International, Materials Park, Ohio, USA, (1996)

  22. Zhu AL, Teo MY, Kulinich SA (2009) Appl Catal A 352:17–26

    Article  CAS  Google Scholar 

  23. Péter L, Liu QX, Kerner Z, Bakonyi I (2004) Electrochim Acta 49:1513–1526

    Google Scholar 

Download references

Acknowledgments

Financial support of the Hungarian Scientific Research Fund (OTKA) through grants # K-75008 and NN–79846 is acknowledged. The work of M. Jafari Fesharaki in Hungary was supported by a scholarship of the Iranian government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Péter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jafari Fesharaki, M., Nabiyouni, G.R., Dégi, J. et al. Anomalous codeposition of cobalt and ruthenium from chloride–sulfate baths. J Solid State Electrochem 16, 715–722 (2012). https://doi.org/10.1007/s10008-011-1416-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1416-6

Keywords

Navigation