Skip to main content
Log in

Establishing conditions for simulating hydrophobic solutes in electric fields by molecular dynamics

Effects of the long-range van der Waals treatment on the apparent particle mobility

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Despite considerable effort over the last decade, the interactions between solutes and solvents in the presence of electric fields have not yet been fully understood. A very useful manner in which to study these systems is through the application of molecular dynamics (MD) simulations. However, a number of MD studies have shown a tremendous sensitivity of the migration rate of a hydrophobic solute to the treatment of the long range part of the van der Waals interactions. While the origin of this sensitivity was never explained, the mobility is currently regarded as an artifact of an improper simulation setup. We explain the spread in observed mobilites by performing extensive molecular dynamics simulations using the GROMACS software package on a system consisting of a model hydrophobic object (Lennard-Jones particle) immersed in water both in the presence and absence of a static electric field. We retrieve a unidirectional field-induced mobility of the hydrophobic object when the forces are simply truncated. Careful analysis of the data shows that, only in the specific case of truncated forces, a non-zero van der Waals force acts, on average, on the Lennard-Jones particle. Using the Stokes law we demonstrate that this force yields quantitative agreement with the field-induced mobility found within this setup. In contrast, when the treatment of forces is continuous, no net force is observed. In this manner, we provide a simple explanation for the previously controversial reports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ashbaugh HS, Paulaitis ME (2001) Effect of solute size and solute-water attractive interactions of hydration water structure around hydrophobic solutes. J Am Chem Soc 123:10721–10728

    Article  CAS  Google Scholar 

  2. Baron R, Trzesniak D, de Vries AH, Elsener A, Marrink SJ, van Gunsteren WF (2007) Comparison of thermodynamic properties of coarse-grained and atomic-level simulation models. Chem Phys Chem 8:452–461

  3. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    CAS  Google Scholar 

  4. Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271

    CAS  Google Scholar 

  5. Bonthuis DJ, Horinek D, Bocquet L, Netz RR (2009) Electrohydraulic power conversion in planar nanochannels. Phys Rev Lett 103:144,503–4

    Article  Google Scholar 

  6. Bonthuis DJ, Falk K, Kaplan CN, Horinek D, Berker AN, Bocquet L, Netz RR (2010) Comment on Pumping of confined water in carbon nanotubes by rotation-translation coupling. Phys Rev Lett 105:209,401–1

    Article  CAS  Google Scholar 

  7. Bonthuis DJ, Rinne KF, Falk K, Kaplan CN, Horinek D, Berker AN, Bocquet L, Netz RR (2011) Theory and simulations of water flow through carbon nanotubes: prospects and pitfalls. J Phys: Condens Matter 23:184,110–10

    Article  Google Scholar 

  8. Bratko D, Daub CD, Leung K, Luzar A (2007) Effect of field direction on electrowetting in a nanopore. J Am Chem Soc 129:2504–2510

    Article  CAS  Google Scholar 

  9. Bratko D, Daub CD, Luzar A (2009) Water-mediated ordering of nanoparticles in an electric field. Faraday Discuss 141:55– 66

    Article  CAS  Google Scholar 

  10. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014,101–7

    Google Scholar 

  11. Chang ST, Paunov VN, Petsev DN, Velev OD (2007) Remotely powered self-propelling particles and micropumps based on miniature diodes. Nat Mater 6:235–240

    CAS  Google Scholar 

  12. Chiu SW, Clark M, Subramaniam S, Jakobsson E (2000) Collective motion artifacts arising in long-duration molecular dynamics simulations. J Comput Chem 21:121–131

    Article  CAS  Google Scholar 

  13. Christen M, Hünenberger P, Bakowies D, Baron R, Bürgi R, Geerke DP, Heinz TN, Kastenholz MA, Kräutler V, Oostenbrink C, Peter C, Trzesniak D, van Gunsteren W F (2005) The GROMOS software for biomolecular simulation: GROMOS05. J Comput Chem 26:1719–1751

    Article  CAS  Google Scholar 

  14. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An \(N\cdot \log (N)\) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    CAS  Google Scholar 

  15. Daub CD, Bratko D, Leung K, Luzar A (2007) Electrowetting at the nanoscale. J Phys Chem C 111:505–509

    Article  CAS  Google Scholar 

  16. Daub CD, Bratko D, Ali T, Luzar A (2009) Microscopic dynamics of the orientation of a hydrated nanoparticle in an electric field. Phys Rev Lett 103:207,801–4

    Article  Google Scholar 

  17. Dzubiella J, Hansen JP (2005) Electric-field-controlled water and ion permeation of a hydrophobic nanopore. J Chem Phys 122:234,706–14

    CAS  Google Scholar 

  18. Gong X, Li J Y, Lu H, Wan R, Li JC, Hu J, Fang H (2007) A charge-driven molecular water pump. Nat Nanotechnol 2:709– 712

    Article  CAS  Google Scholar 

  19. Harvey SC, Tan RKZ, Cheatham TE (1998) The flying ice cube: velocity rescaling in molecular dynamics leads to violation of energy equipartition. J Comput Chem 19:726–740

    Article  CAS  Google Scholar 

  20. Hayes RA, Feenstra BJ (2003) Video-speed electronic paper based on electrowetting. Nature 425:383–385

    Article  CAS  Google Scholar 

  21. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: A linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  22. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    Article  Google Scholar 

  23. Huang DM, Chandler D (2002) The hydrophobic effect and the influence of solute-solvent interactions. J Phys Chem B 106:2047–2053

    CAS  Google Scholar 

  24. Hummer G, Garde S (1998) Cavity expulsion and weak dewetting of hydrophobic solutes in water. Phys Rev Lett 80:4193– 4196

    Article  CAS  Google Scholar 

  25. Hünenberger P (1999) Simulation and theory of electrostatic interactions in solution: computational chemistry, biophysics, and aqueous solutions. Am Inst Phys:17–83

  26. Joseph S, Aluru NR (2008) Pumping of confined water in carbon nanotubes by rotation-translation coupling. Phys Rev Lett 101:064,502–4

    Article  Google Scholar 

  27. Kinoshita M (2005) Density and orientational structure of water around a hydrophobic solute: effects due to the solute size. J Mol Liq 119:47–54

    Article  CAS  Google Scholar 

  28. Knecht V, Risselada HJ, Mark AE, Marrink SJ (2008) Electrophoretic mobility does not always reflect the charge on an oil droplet. J Colloid Interface Sci 318:477–486

    Article  CAS  Google Scholar 

  29. Knecht V, Levine ZA, Vernier PT (2010) Electrophoresis of neutral oil in water. J Colloid Interface Sci 352:223–231

    Article  CAS  Google Scholar 

  30. Leach AR (1996) Molecular modelling: principles and applications. Addison-Wesley Longman, Harlow

    Google Scholar 

  31. Morishita T (2000) Fluctuation formulas in molecular-dynamics simulations with the weak coupling. J Chem Phys 113(8):2976–2982

    CAS  Google Scholar 

  32. Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268

    Article  Google Scholar 

  33. O’Brien RW, Beattie JK, Djerdjev AM (2014) The electrophoretic mobility of an uncharged particle. J Colloid Interface Sci 420:70–73

    Article  Google Scholar 

  34. Pollack MG, Fair RB, Shenderov AD (2000) Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 77:1725–1726

    Article  CAS  Google Scholar 

  35. Robinson L, Hentzell A, Robinson ND, Isaksson J, Berggren M (2006) Electrochemical wettability switches gate aqueous liquids in microfluidic systems. Lab Chip 6:1277–1278

    Article  CAS  Google Scholar 

  36. Rotenberg B, Pagonabarraga I (2013) Electrokinetics: insights from simulation on the microscopic scale. Mol Phys 111:827–842

    Article  CAS  Google Scholar 

  37. Shamai R, Andelman D, Berge B, Hayes R (2008) Water, electricity, and between … On electrowetting and its applications. Soft Matter 4:38–45

    Article  CAS  Google Scholar 

  38. Smith AS (2005) The total solute-water correlation function forbalancepage Lennard-Jones particles. Fizika A 14:187–194

    CAS  Google Scholar 

  39. Vaitheeswaran S, Yin H, Rasaiah JC (2005) Water between plates in the presence of an electric field in an open system. J Phys Chem B 109:6629–6635

    CAS  Google Scholar 

  40. van der Spoel, D van Maaren PJ (2006) The origin of layer structure artifacts in simulations of liquid water. J Chem Theory Comput 2:1–11

  41. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) Gromacs: Fast, flexible and free. J Comp Chem 26:1701–1718

  42. van Gunsteren WF, Berendsen HJC (1988) A leap-frog algorithm for stochastic dynamics. Mol Sim 1:173–185

  43. Wong-ekkabut J, Miettinen MS, Dias C, Karttunen M (2010) Static charges cannot drive a continuous flow of water molecules through a carbon nanotube. Nat Nanotechnol 5:555–557

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank V. Knecht, K. Mecke und U. Felderhof for stimulating discussions. ASS and DMS acknowledge financial support from the Cluster of Excellence: Engineering of Advanced Materials, Erlangen, Germany. ZM acknowledges the partial financial support from BAYHOST.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ana-Sunčana Smith or David M. Smith.

Additional information

This paper belongs to a Topical Collection on the occasion of Prof. Tim Clark’s 65th birthday

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 657 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miličević, Z., Marrink, S.J., Smith, AS. et al. Establishing conditions for simulating hydrophobic solutes in electric fields by molecular dynamics. J Mol Model 20, 2359 (2014). https://doi.org/10.1007/s00894-014-2359-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2359-5

Keywords

Navigation