Skip to main content
Log in

Theoretical study on aluminum carbide endohedral fullerene-Al4C@C80

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The possibility of a new endohedral fullerene with a trapped aluminum carbide cluster, Al4C @C80-I h , was theoretical investigated. The geometries and electronic properties of it were investigated using density functional theory methods. The Al4C unit formally transfers six electrons to the C80 cage which induces stabilization of Al4C@C80. A favorable binding energy, relatively large HOMO-LUMO gap, electron affinities and ionization potentials suggested the Al4C@C80 is rather stable. The analysis of vertical ionization potential and vertical electron affinity indicate Al4C@C80 is a good electron acceptor.

An endohedral fullerene with a trapped aluminum carbide cluster, Al4C @C80-I h , was investigated using density functional theory. A favorable binding energy, relatively large HOMO-LUMO gap, electron affinities and ionization potentials suggested it is rather stable

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chaur MN, Athans AJ, Echegoyen L (2008) Tetrahedron 64:11387–11393

    Article  CAS  Google Scholar 

  2. Heath JR, Obrien SC, Zhang Q, Liu Y, Curl RF, Kroto HW, Tittel FK, Smalley RE (1985) J Am Chem Soc 107:7779–7780

    Article  CAS  Google Scholar 

  3. Alvarez MM, Gillan EG, Holczer K, Kaner RB, Min KS, Whetten RL (1991) J Phys Chem 95:10561–10563

    Article  CAS  Google Scholar 

  4. Stevenson S, Fowler PW, Heine T, Duchamp JC, Rice G, Glass T, Harich K, Hajdu E, Bible R, Dorn HC (2000) Nature 408:427–428

    Article  CAS  Google Scholar 

  5. Wang CR, Kai T, Tomiyama T, Yoshida T, Kobayashi Y, Nishibori E, Takata M, Sakata M, Shinohara H (2001) Angew Chem Int Ed 40:397–399

    Article  CAS  Google Scholar 

  6. Wang TS, Feng L, Wu JY, Xu W, Xiang JF, Tan K, Ma YH, Zheng JP, Jiang L, Lu X, Shu CY, Wang CR (2010) J Am Chem Soc 132:16362–16364

    Article  CAS  Google Scholar 

  7. Stevenson S, Mackey MA, Stuart MA, Phillips JP, Easterling ML, Chancellor CJ, Olmstead MM, Balch AL (2008) J Am Chem Soc 130:11844–11845

    Article  CAS  Google Scholar 

  8. Saunders M, Jimenezvazquez HA, Cross RJ, Poreda RJ (1993) Science 259:1428–1430

    Article  CAS  Google Scholar 

  9. Komatsu K, Murata M, Murata Y (2005) Science 307:238–240

    Article  CAS  Google Scholar 

  10. Ramachandran CN, Sathyamurthy N (2005) Chem Phys Lett 410:348–351

    Article  CAS  Google Scholar 

  11. Stevenson S, Rice G, Glass T, Harich K, Cromer F, Jordan MR, Craft J, Hadju E, Bible R, Olmstead MM, Maitra K, Fisher AJ, Balch AL, Dorn HC (1999) Nature 401:55–57

    Article  CAS  Google Scholar 

  12. Yamada M, Akasaka T, Nagase S (2010) Acc Chem Res 43:92–102

    Article  CAS  Google Scholar 

  13. Sun BY, Li MX, Luo HX, Shi ZJ, Gu ZN (2002) Electrochim Acta 47:3545–3549

    Article  CAS  Google Scholar 

  14. Lu X, Feng L, Akasaka T, Nagase S (2012) Chem Soc Rev doi:10.1039/c2cs35214a

  15. Beavers CM, Zuo T, Duuchamp JC, Harich K, Dorn HC, Olmsread MM, Balch AL (2006) J Am Chem Soc 128:11352–11353

    Article  CAS  Google Scholar 

  16. Yang S, Popov AA, Dunsch L (2007) Angew Chem Int Ed 46:1256–1259

    Article  CAS  Google Scholar 

  17. Lu X, Akasaka T, Nagase S (2011) Chem Commun 47:5942

    Article  CAS  Google Scholar 

  18. Yang S, Liu F, Chen C, Jiao M, Wei T (2011) Chem Commun 47:11822

    Article  CAS  Google Scholar 

  19. Manolopoulos DE, Folwer PW (1992) J Chem Phys 96:7603–7614

    Article  CAS  Google Scholar 

  20. Kobayashi K, Nagase S, Akasaka T (1995) Chem Phys Lett 245:230–236

    Article  CAS  Google Scholar 

  21. Chaur MN, Melin F, Ortiz AL, Echegoyen L (2009) Angew Chem Int Ed 48:7514–7538

    Article  CAS  Google Scholar 

  22. Dunsch L, Yang SF (2007) Small 3:1298–1320

    Article  CAS  Google Scholar 

  23. Stevenson S, Phillips JP, Reid J E, Olmstead MM, Rath SP, Balch AL (2004) Chem Commun 2814–2815

  24. Yang SF, Dunsch L (2005) Chem Eur J 12:413–419

    Article  CAS  Google Scholar 

  25. Dunsch L, Krause M, Noack J, Georgi P (2004) J Phys Chem Solids 65:309–315

    Article  CAS  Google Scholar 

  26. Chen N, Zhang EY, Wang CR (2006) J Phys Chem B 110:13322–13325

    Article  CAS  Google Scholar 

  27. Chen N, Fan LZ, Tan K, Wu YQ, Shu CY, Xin L, Wang CR (2007) J Phys Chem C 111:11823–11828

    Article  CAS  Google Scholar 

  28. Stevenson S, Chancellor CJ, Lee HM, Olmstead MM, Balch AL (2008) Inorg Chem 47:1420–1427

    Article  CAS  Google Scholar 

  29. Yang SF, Chen CB, Popov AA, Zhang WF, Liu FP, Dunsch L (2009) Chem Commun 6391–6393

  30. Iiduka Y, Wakahara T, Nakahodo T, Tsuchiya T, Sakuraba A, Maeda Y, Akasaka T, Yoza K, Horn E, Kato T, Liu MTH, Mizorogi N, Kobayashi K, Nagase S (2005) J Am Chem Soc 127:12500–12501

    Article  CAS  Google Scholar 

  31. Wang TS, Chen N, Xiang JF, Li B, Wu JY, Xu W, Jiang L, Tan K, Shu CY, Lu X, Wang CR (2009) J Am Chem Soc 131:16646–16647

    Article  CAS  Google Scholar 

  32. Kurihara H, Lu X, Iiduka Y, Mizorogi N, Slanina Z, Tsuchiya T, Akasaka T, Nagase S (2011) J Am Chem Soc 133:2382–2385

    Article  CAS  Google Scholar 

  33. Mercado BQ, Olmstead MM, Beavers CM, Easterling ML, Stevenson S, Mackey MA, Coumbe CE, Phillips JD, Phillips JP, Poblet JM, Balch AL (2010) Chem Commun 46:279–281

    Article  CAS  Google Scholar 

  34. Krause M, Ziegs F, Popov AA, Dunsch L (2007) Chemphyschem 8:537–540

    Article  CAS  Google Scholar 

  35. Delley B (1990) J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  36. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  37. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  Google Scholar 

  38. Li X, Wang LS, Boldyrev AI, Simons J (1999) J Am Chem Soc 121:6033–6038

    Article  CAS  Google Scholar 

  39. Zubarev DY, Boldyre AI (2005) J Chem Phys 122:144322

    Article  Google Scholar 

  40. Shinohara H (2000) Rep Prog Phys 63:843–892

    Article  CAS  Google Scholar 

  41. Yang SF, Dunsch L (2008) “Endohedral fullerenes”, nanomaterials. In: Lukehart CM, Scott RA, (eds) Inorganic and bioinorganic perspectives. Wiley, Chichester

  42. Ramos E, Monroy BM, Alonso JC, Sansores LE, Salcedo R, Martínez A (2012) J Phys Chem C 116:3988–3994

    Article  CAS  Google Scholar 

  43. Campanera JM, Bo C, Olmstead MM, Balch AL, Poblet JM (2002) J Phys Chem A 106:12356–12364

    Article  CAS  Google Scholar 

  44. Kim YH, Zhao YF, Williamson A, Heben MJ, Zhang SB (2006) Phys Rev Lett 96:016102

    Article  Google Scholar 

  45. Okamoto Y, Miyamoto Y (2001) J Phys Chem B 105:3470–3474

    Article  CAS  Google Scholar 

  46. Gao Y, Zeng XC (2007) J Phys Condens Matter 19:386220

    Article  Google Scholar 

  47. Ioffe IN, Boltalina OV, Sidorov LN, Dorn HC, Stevenson S, Rice G (2000) In: Kadish KM, Ruoff RS (eds) Fullerenes: Recent advances in the chemistry and physics of fullerenes and related materials. Electrochemical Society, Pennington, p 166

    Google Scholar 

  48. Langa F, Nierengarten JF (2007) Fullerenes: Principles and applications. Royal Society of Chemistry, Oxford

    Google Scholar 

  49. Guldi DM, Illescas BM, Atienza CM, Wielopolski M, Martín N (2009) Chem Soc Rev 38:1587–1597

    Article  CAS  Google Scholar 

  50. Bottari G, de la Torre G, Guldi DM, Torres T (2010) Chem Rev 110:6768–6816

    Article  CAS  Google Scholar 

  51. Quintiliani M, Kahnt A, Wöfle T, Hieringer W, Vázquez P, Görling A, Guldi DM, Torres T (2008) Chem Eur J 14:3765–3775

    Article  CAS  Google Scholar 

  52. Ross RB, Cardona CM, Guldi DM, Sankaranarayanan SG, Reese MO, Kopidakis N, Peet J, Walker B, Bazan GC, Keuren EV, Holloway BC, Drees M (2009) Nat Mater 8:208–212

    Article  CAS  Google Scholar 

  53. Ross RB, Cardona CM, Swain FB, Guldi DM, Sankaranarayanan SG, Keuren EV, Holloway BC, Drees M (2009) Adv Funct Mater 19:2332–2337

    Article  CAS  Google Scholar 

  54. Martínez A, Rodríguez-Gironés MA, Barbosa A, Costas M (2008) J Phys Chem A 112:9037–9042

    Article  Google Scholar 

  55. Martínez A, Galano A (2010) J Phys Chem C 114:8184–8191

    Article  Google Scholar 

  56. Gázquez JL, Cedillo A, Vela A (2007) J Phys Chem A 111:1966–1970

    Article  Google Scholar 

  57. Yang SF, Popov A, Kalbac M, Duusch L (2008) Chem Eur J 14:2084–2092

    Article  CAS  Google Scholar 

  58. Yang SF, Popov AA, Chen CH, Dunsch L (2009) J Phys Chem C 113:7616–7623

    Article  CAS  Google Scholar 

  59. Tarabek J, Yang SF, Dunsch L (2009) Chemphyschem 10:1037–1043

    Article  CAS  Google Scholar 

  60. Zhang L, Popov A, Yang SF, Klod S, Rapta P, Dunsch L (2010) Phys Chem Chem Phys 12:7840–7847

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Anhui Province (No. 090414186), the Key Research Project of Natural Science Foundation of Anhui Provincial Universities (No. KJ2010A029) and the 211 Project of Anhui University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Liang Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 153 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Q.L., Song, W.J., Meng, J.W. et al. Theoretical study on aluminum carbide endohedral fullerene-Al4C@C80 . J Mol Model 19, 1205–1209 (2013). https://doi.org/10.1007/s00894-012-1665-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1665-z

Keywords

Navigation