Skip to main content
Log in

Computational characterization of sodium selenite using density functional theory

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this theoretical study we used density functional theory to calculate the molecular and crystalline structures of sodium selenite. Our structural results were compared with experimental data. From the molecular structure we determined the ionization potential, electronic affinity, and global reactivity parameters like electronegativity, hardness, softness and global electrophilic index. A significant difference in the IP and EA values was observed, and this difference was dependent on the calculation method used (employing either vertical or adiabatic energies). Thus, values obtained for the electrophilic index (2.186 eV from vertical energies and 2.188 eV from adiabatic energies) were not significantly different. Selectivity was calculated using the Fukui functions. Since the Mulliken charge study predicted a negative value, it is recommended that AIM should be used in selectivity characterization. It was evident from the selectivity index that sodium atoms are the most sensitive sites to nucleophilic attack. The results obtained in this work provide data that will aid the characterization of compounds used in crop biofortification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2a–b
Fig. 3a–c

Similar content being viewed by others

References

  1. Ximénez-Embún P, Alonso I, Madrid-Albarrán Y, Cámara C (2004) Establishment of selenium uptake and species distribution in lupine, Indian mustard, and sunflower plants. J Agric Food Chem 52(4):832–838

    Google Scholar 

  2. Zhu Y-G, Pilon-Smits EAH, Zhao F-J, Williams PN, Megharg AA (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Science 14:436–442. doi:10.1016/j.tplants.2009.06.006

    Article  CAS  Google Scholar 

  3. Rayman MP (2002) The argument for increasing selenium intake. Proc Nutr Soc 61:203–215

    Article  CAS  Google Scholar 

  4. Diwadkar-Navsariwala V, Prins GS, Swanson SM, Birch LA, Ray VH, Hedayat S, Lantvit DL, Diamond AM (2006) Selenoprotein deficiency accelerates prostate carcinogenesis in a transgenic model. Proc Natl Acad Sci USA 103:8179–8184

    Article  CAS  Google Scholar 

  5. Smkolji P, Pograje L, Hlaston-Ribic C, Stibilj V (2005) Selenium content in selected Slovenian foodstuffs and estimated daily intakes of selenium. Food Chem 90:691–697. doi:10.1016/j.foodchem.2004.04.028

    Article  Google Scholar 

  6. Pedrero Z, Madrid Y, Cámara C (2006) Selenium species bioaccessibility in enriched radish (Raphanus sativus): a potential dietary source of selenium. J Agric Food Chem 54:2412–2417

    Article  CAS  Google Scholar 

  7. Chen L, Yang F, Xu J, Yun H, Hu Q, Zhang Y, Pan G (2002) Determination of selenium concentration of rice in China and effect of fertilization of selenite and selenate on Se content of rice. J Agric Food Chem 50:5128–5130

    Article  CAS  Google Scholar 

  8. Lyons GH, Stangoulis JCR, Gram RD (2004) Exploiting micronutrient interaction to optimize biofortification programs: the case for inclusion of selenium and iodine in the Harvest Plust programs. Nutr Rev 62:247–252

    Google Scholar 

  9. Abdo KM (1994) Toxicity Report Series Number 38. National Toxicology Program, Bethesda

  10. Pehrson B, Ortman K, Madjid N, Trafikowska U (1999) The influence of dietary selenium as selenium yeast or sodium selenite on the concentration of selenium in the milk of Suckler cows and on the selenium status of their calves. J Anim Sci 77:3371–3376

    CAS  Google Scholar 

  11. Romero-Pérez A, García-García E, Zavaleta-Mancera A, Ramírez-Bribiesca JE, Revilla-Vázquez A, Hernández-Calva LM, López-Arellano R, Cruz-Monterrosa RG (2010) Designing and evaluation of sodium selenite nanoparticles in vitro to improve selenium absorption in ruminants. Vet Res Commun 34:71–79. doi:10.1007/s11259-009-9335-z

    Article  Google Scholar 

  12. Li X, Liu Y, Deng F, Wang C, Qu S (2000) Microcalorimetric study of the toxic effect of sodium selenite on the mitochondria metabolism of Carassius auratus liver. Biol Trace Elem Res 77:261–271

    Google Scholar 

  13. Ting-Ming C, Fang-Yuan H, Cai-Min X, Bing-She H, Hua D, Lu Z, Xuan W, Yang Y, Hua-Zhen P, Zhi-Nan Z (2006) Distinct effects of different concentrations of sodium selenite on apoptosis, cell cycle, and gene expression profile in acute promyeloytic leukemia-derived NB4 cells. Ann Hematol 85:434–442. doi:10.1007/s00277-005-0046-4

    Article  Google Scholar 

  14. Sharma S, Bansal A, Dhillon SK, Karaj S (2009) Comparative effects of selenate and selenite on growth and biochemical composition of rapeseed (Brassica napus L.) Dhillon. Plant Soil. doi:10.1007/s11104-009-0162-3

    Google Scholar 

  15. Sanuki S, Kojima T, Arai M, Nagaoka S, Majima H (1999) Photocatalytic reduction of selenate and selenite solutions using TiO2. Metall Mater Trans B 30B:15–20. doi:10.1007/s11663-999-0002-0

    Article  CAS  Google Scholar 

  16. Xiong G, Sullivan VS, Stair PC, Zajac GW, Trail SS, Kaduk JA, Golabb JT, Brazdil JF (2004) Effect of titanium substitution on the structure of VSbO4 catalysts for propane ammoxidation. J Catal 230:317–326. doi:10.1016/j.jcat.11.046

    Article  Google Scholar 

  17. Ding YC, Xiang AP, Xu M, Zhu WJ (2008) Electronic structures and optical properties of ٧-Si3N4 doped with La. Physica B 403:2200–2206. doi:10.1016/j.physb.2007.11.025

    Article  CAS  Google Scholar 

  18. Zhou X, Liu T, Zhang Q, Cheng F, Qiao H (2009) First-principles study of cadmium vacancy in CdWO4 crystal. Solid State Sci 11:2071–2074. doi:10.1016/j.solidstatesciences.2009.09.006

    Article  CAS  Google Scholar 

  19. Louail L, Haddadi K, Maouche D, Ali Sahraoui F, Hachemi A (2008) Electronic band structure of calcium selenide under pressure. Physica B 403:3022–3026

    Article  CAS  Google Scholar 

  20. Gua W, Wang SY, Xu M, Chen YR, Chen LY, Jia Y (2009) Studies of the electronic and optical properties of BaMxO1_x (M = S, Se, Te) using first-principle calculations. Opt Commun 282:48–52. doi:10.1016/j.optcom.2008.09.077

    Article  Google Scholar 

  21. Zhang H, Liu T, Zhang Q, Wang X, Guo X, Song M, Yin J (2009) First-principles study on electronic structures and color centers in BaWO4 crystal with barium vacancy. Physica B 404:1538–1543. doi:10.1016/j.physb.2009.01.011

    Article  CAS  Google Scholar 

  22. Verma VP (1999) A review of synthetic thermoanalytical, IR, Raman and X-ray studies on metal selenites. Thermochim Acta 327:63–102

    Article  CAS  Google Scholar 

  23. Vlaev L, Tavlieva M, Barthel J (2007) Temperature and concentration dependences of the electrical conductance, diffuson and kinetic parameters of sodium selenite solutions in ordinary and heavy water. J Sol Chem 36:447–465. doi:10.1007/s10953-007-9125-6

    Article  CAS  Google Scholar 

  24. Pronina NA, Kovshova YI, Popova VV, Lapin AB, Alekseeva SG, Baum RF, Mishina IM, Tsoglin LN (2002) The effect of selenite ions on growth and selenium accumulation in Spirulina platensis. Russ J Plant Physiol 49:235–241. doi:10.1023/A:1014809825140

    Article  CAS  Google Scholar 

  25. Wang Y (2009) Differential effects of sodium selenite and nano-Se on growth performance, tissue Se distribution, and glutathione peroxidase activity of avian broiler. Biol Trace Elem Res 128:184–190. doi:10.1007/s12011-008-8264-y

    Article  CAS  Google Scholar 

  26. Wickleder MS (2002) Sodium selenite, Na2SeO3. Acta Cryst E58:i103–i104

    CAS  Google Scholar 

  27. Altmann JA, Handy NC (1999) Evaluation of the performance of the HCTH exchange-correlation functional using a benchmark of sulfur compounds. Phys Chem Chem Phys 1:5529–5536

    Article  CAS  Google Scholar 

  28. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 163:864–871. doi:10.1103/PhysRev.136.B864

    Google Scholar 

  29. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A 140:1133–A1138. doi:10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  30. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14:2717–2744. doi:10.1088/0953-8984/14/11/301

    Article  CAS  Google Scholar 

  31. Broyden CG (1970) The convergence of a class of double-rank minimization algorithms. 2: The new algorithms. J Inst Math Appl 6:222–231. doi:10.1093/imamat/6.3.222

    Article  Google Scholar 

  32. Fletcher R (1970) A new approach to variable metric algorithms. Comput J 13:317–322. doi:10.1093/comjnl/13.3.317

    Article  Google Scholar 

  33. Goldfarb D (1970) A family of variable-metric algorithms derived by variational means. Math Comput 24:23–26

    Article  Google Scholar 

  34. Shanno DF (1970) Conditioning of quasi-Newton methods for function minimization. Math Comput 24:647–656

    Article  Google Scholar 

  35. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249. doi:10.1103/PhysRevB.45.13244

    Article  Google Scholar 

  36. Accelrys Software Inc. (2008) Materials Studio modeling, CASTEP code, release 4.4. Accelrys Software Inc., San Diego

  37. Vanderbilt D (1990) Soft self-consistent pseudopotentials in generalized eigenvalue formalism. Phys Rev B 41:7892–7895. doi:10.1103/PhysRevB.41.7892

    Article  Google Scholar 

  38. Accelrys Software Inc. (2008) Materials Studio release notes, release 4.4. Accelrys Software Inc., San Diego

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian Inc., Wallingford

  40. Hamprecht FA, Cohem AJ, Tozer DJ, Handy NC (1998) Development and assessment of new exchange-correlation functional. J Chem Phys 109:6264. doi:10.1063/1.477267

    Article  CAS  Google Scholar 

  41. Boese AD, Handy NC (2000) New generalized gradient approximation functional. J Chem Phys 112:1670–1678. doi:10.1063/1.480732

    Article  CAS  Google Scholar 

  42. Boese AD, Martin JML (2004) Development of novel density functionals for thermochemical kinetics. J Chem Phys 121:3405–3416. doi:10.1063/1.1774975

    Article  CAS  Google Scholar 

  43. Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation. Can J Chem 70:560–571. doi:10.1139/v92-079

    Article  CAS  Google Scholar 

  44. Coquet R, Mizuki T, Iwasawa Y (2007) Energy-gaining formation and catalytic behavior of active structures in a SiO2-supported unsaturated Ru complex catalyst for alkene epoxidation by DFT calculations. Phys Chem Chem Phys 9:6040–6046. doi:10.1039/b710714e

    Article  CAS  Google Scholar 

  45. Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050. doi:10.1021/ja00326a036

    Article  CAS  Google Scholar 

  46. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. J Chem Phys 23:1833–1840. doi:10.1063/1.1740588

    Article  CAS  Google Scholar 

  47. Mulliken RS (1962) Criteria for the construction of good self-consistent field molecular orbital wavefunctions and the significance of LCAO-MO population analysis. J Chem Phys 36:3428–3439

    Article  CAS  Google Scholar 

  48. Bader RFW (1990) Atoms in molecules. A quantum theory. Oxford University Press, Oxford

    Google Scholar 

  49. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807. doi:10.1063/1.436185

    Article  CAS  Google Scholar 

  50. Toro-Labbé A (1999) Characterization of chemical reactions from the profiles of energy, chemical potential and hardness. J Phys Chem A 103:4398–4403. doi:10.1021/jp984187g

    Article  Google Scholar 

Download references

Acknowledgments

D.B.J. and E.S. are researchers from CONACYT and CIAD, D.G.M. is a researcher from CONACYT and CIMAV, DH.G. is a researcher from CNyN at Universidad Nacional Autónoma de México (UNAM). A.F.H. is grateful for the doctoral scholarship granted by the Consejo Nacional de Ciencia y Tecnología (CONACYT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Barraza-Jiménez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barraza-Jiménez, D., Flores-Hidalgo, M.A., Galvan, D.H. et al. Computational characterization of sodium selenite using density functional theory. J Mol Model 17, 701–708 (2011). https://doi.org/10.1007/s00894-010-0766-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0766-9

Keywords

Navigation