Skip to main content
Log in

Homology modeling and molecular dynamics simulations of HgiDII methyltransferase in complex with DNA and S-adenosyl-methionine: Catalytic mechanism and interactions with DNA

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

M.HgiDII is a methyltransferase (MTase) from Herpetosiphon giganteus that recognizes the sequence GTCGAC. This enzyme belongs to a group of MTases that share a high degree of amino acid similarity, albeit none of them has been thoroughly characterized. To study the catalytic mechanism of M.HgiDII and its interactions with DNA, we performed molecular dynamics simulations with a homology model of M.HgiDII complexed with DNA and S-adenosyl-methionine. Our results indicate that M.HgiDII may not rely only on Glu119 to activate the cytosine ring, which is an early step in the catalysis of cytosine methylation; apparently, Arg160 and Arg162 may also participate in the activation by interacting with cytosine O2. Another residue from the catalytic site, Val118, also played a relevant role in the catalysis of M.HgiDII. Val118 interacted with the target cytosine and kept water molecules from accessing the region of the catalytic pocket where Cys79 interacts with cytosine, thus preventing water-mediated disruption of interactions in the catalytic site. Specific recognition of DNA was mediated mainly by amino acids of the target recognition domain, although some amino acids (loop 80–88) of the catalytic domain may also contribute to DNA recognition. These interactions involved direct contacts between M.HgiDII and DNA, as well as indirect contacts through water bridges. Additionally, analysis of sequence alignments with closely related MTases helped us to identify a motif in the TRD of M.HgiDII that may be relevant to specific DNA recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kozbial PZ, Mushegian AR (2005) Natural history of S-adenosylmethionine-binding proteins. BMC Struct Biol 5:19. doi:10.1186/1472-6807-5-19

    Article  Google Scholar 

  2. Bheemanaik S, Reddy YVR, Rao DN (2006) Structure, function and mechanism of exocyclic DNA methyltransferases. Biochem J 399:177–190

    Article  CAS  Google Scholar 

  3. Bujnicki JM (2001) Understanding the evolution of restriction-modification systems: clues from sequence and structure comparisons. Acta Biochim Pol 48:935–967

    CAS  Google Scholar 

  4. Tock MR, Dryden DTF (2005) The biology of restriction and anti-restriction. Curr Opin Microbiol 8:466–472

    Article  CAS  Google Scholar 

  5. Buryanov Y, Shevchuk T (2005) The use of prokaryotic DNA methyltransferases as experimental and analytical tools in modern biology. Anal Biochem 338:1–11

    Article  CAS  Google Scholar 

  6. Klimasauskas S, Weinhold E (2007) A new tool for biotechnology: AdoMet-dependent methyltransferases. Trends Biotechnol 25:99–104

    Article  CAS  Google Scholar 

  7. Jeltsch A (2002) Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. ChemBioChem 3:274–293

    Article  CAS  Google Scholar 

  8. Malone T, Blumenthal RM, Cheng X (1995) Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. J Mol Biol 253:618–632

    Article  CAS  Google Scholar 

  9. Estabrook RA, Lipson R, Hopkins B, Reich N (2004) The coupling of tight DNA binding and base flipping: identification of a conserved structural motif in base flipping enzymes. J Biol Chem 279:31419–31428

    Article  CAS  Google Scholar 

  10. Klimasauskas S, Kumar S, Roberts RJ, Cheng X (1994) HhaI methyltransferase flips its target base out of the DNA helix. Cell 76:357–369

    Article  CAS  Google Scholar 

  11. Huang N, Banavali NK, MacKerell AD (2003) Protein-facilitated base flipping in DNA by cytosine-5-methyltransferase. Proc Natl Acad Sci USA 100:68–73

    Article  CAS  Google Scholar 

  12. Estabrook RA, Nguyen TT, Fera N, Reich NO (2009) Coupling Sequence-specific Recognition to DNA Modification. J Biol Chem 284:22690–22696

    Article  CAS  Google Scholar 

  13. Zhou H, Purdy MM, Dahlquist FW, Reich NO (2009) The recognition pathway for the DNA cytosine methyltransferase M.HhaI. Biochemistry 48:7807–7816

    Article  CAS  Google Scholar 

  14. Estabrook RA, Reich N (2006) Observing an induced-fit mechanism during sequence-specific DNA methylation. J Biol Chem 281:37205–37214

    Article  CAS  Google Scholar 

  15. Shieh F, Reich NO (2007) AdoMet-dependent methyl-transfer: Glu119 is essential for DNA C5-cytosine methyltransferase M.HhaI. J Mol Biol 373:1157–1168

    Article  CAS  Google Scholar 

  16. Shieh F, Youngblood B, Reich NO (2006) The role of Arg165 towards base flipping, base stabilization and catalysis in M.HhaI. J Mol Biol 362:516–527

    Article  CAS  Google Scholar 

  17. Zhang X, Bruice TC (2006) The mechanism of M.HhaI DNA C5 cytosine methyltransferase enzyme: a quantum mechanics/molecular mechanics approach. Proc Natl Acad Sci USA 103:6148–6153

    Article  CAS  Google Scholar 

  18. Lau EY, Bruice TC (1999) Active site dynamics of the HhaI methyltransferase: insights from computer simulation. J Mol Biol 293:9–18

    Article  CAS  Google Scholar 

  19. Roberts RJ (1994) An amazing distortion in DNA induced by a methyltransferase. Biosci Rep 14:103–117

    Article  CAS  Google Scholar 

  20. Szegedi SS, Gumport RI (2000) DNA binding properties in vivo and target recognition domain sequence alignment analyses of wild-type and mutant RsrI [N6-adenine] DNA methyltransferases. Nucleic Acids Res 28:3972–3981

    Article  CAS  Google Scholar 

  21. Vilkaitis G, Dong A, Weinhold E, Cheng X, Klimasauskas S (2000) Functional roles of the conserved threonine 250 in the target recognition domain of HhaI DNA methyltransferase. J Biol Chem 275:38722–38730

    CAS  Google Scholar 

  22. Neely RK, Roberts RJ (2008) The BsaHI restriction-modification system: cloning, sequencing and analysis of conserved motifs. BMC Mol Biol 9:48. doi:10.1186/1471-2199-9-48

    Article  Google Scholar 

  23. Kröger M, Hobom G, Schütte H, Mayer H (1984) Eight new restriction endonucleases from Herpetosiphon giganteus–divergent evolution in a family of enzymes. Nucleic Acids Res 12:3127–3141

    Article  Google Scholar 

  24. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  25. Bryson K, McGuffin LJ, Marsden RL, Ward LL, Sodhi JS, Jones DT (2005) Protein structure prediction servers at University College London. Nucleic Acids Res 33:W36–38

    Article  CAS  Google Scholar 

  26. Eswar N, Eramian D, Webb B, Shen M, Sali A (2008) Protein structure modeling with MODELLER. Methods Mol Biol 426:145–159

    Article  CAS  Google Scholar 

  27. Melo F, Devos D, Depiereux E, Feytmans E (1997) ANOLEA: a www server to assess protein structures. Proc Int Conf Intell Syst Mol Biol 5:187–190

    CAS  Google Scholar 

  28. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  29. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  30. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  31. Mackerell A, Banavali N (2000) All-atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution. J Comput Chem 21:105–120

    Article  CAS  Google Scholar 

  32. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  33. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–410

    Article  Google Scholar 

  34. Eisenberg D, Lüthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404

    Article  CAS  Google Scholar 

  35. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  36. Bourne PE, Weissig H (2003) Structural bioinformatics. Wiley-Liss, Wilmington

    Book  Google Scholar 

  37. Koudan EV, Bujnicki JM, Gromova ES (2004) Homology modeling of the CG-specific DNA methyltransferase SssI and its complexes with DNA and AdoHcy. J Biomol Struct Dyn 22:339–345

    CAS  Google Scholar 

  38. Bujnicki JM (2000) Homology modelling of the DNA 5mC methyltransferase M.BssHII. Is permutation of functional subdomains common to all subfamilies of DNA methyltransferases? Int J Biol Macromol 27:195–204

    Article  CAS  Google Scholar 

  39. Reinisch K (1995) The crystal structure of HaeIII methyltransferase covalently complexed to DNA: An extrahelical cytosine and rearranged base pairing. Cell 82:143–153

    Article  CAS  Google Scholar 

  40. Darii MV, Cherepanova NA, Subach OM, Kirsanova OV, Raskó T, Slaska-Kiss K, Kiss A, Deville-Bonne D, Reboud-Ravaux M, Gromova ES (2009) Mutational analysis of the CG recognizing DNA methyltransferase SssI: insight into enzyme-DNA interactions. Biochim Biophys Acta. doi:10.1016/j.bbapap. 2009.07.016

    Google Scholar 

  41. Gabbara S, Sheluho D, Bhagwat AS (1995) Cytosine methyltransferase from Escherichia coli in which active site cysteine is replaced with serine is partially active. Biochemistry 34:8914–8923

    Article  CAS  Google Scholar 

  42. Kumar S, Horton JR, Jones GD, Walker RT, Roberts RJ, Cheng X (1997) DNA containing 4′-thio-2′-deoxycytidine inhibits methylation by HhaI methyltransferase. Nucleic Acids Res 25:2773–2783

    Article  CAS  Google Scholar 

  43. Lauster R, Trautner TA, Noyer-Weidner M (1989) Cytosine-specific type II DNA methyltransferases. A conserved enzyme core with variable target-recognizing domains. J Mol Biol 206:305–312

    Article  CAS  Google Scholar 

  44. Wintjens R, Liévin J, Rooman M, Buisine E (2000) Contribution of cation-pi interactions to the stability of protein-DNA complexes. J Mol Biol 302:395–410

    Article  CAS  Google Scholar 

  45. Reddy CK, Das A, Jayaram B (2001) Do water molecules mediate protein-DNA recognition? J Mol Biol 314:619–632

    Article  CAS  Google Scholar 

  46. Rhodes D, Schwabe JW, Chapman L, Fairall L (1996) Towards an understanding of protein-DNA recognition. Philos Trans R Soc Lond B Biol Sci 351:501–509

    Article  CAS  Google Scholar 

Download references

Acknowledgments

RMR-A is grateful for support to this work from the Instituto Politécnico Nacional (IPN), SIP grant number 20091190, and is recipient of COFAA and EDD fellowships, granted by the IPN. JAC gives thanks to the Consejo Nacional de Ciencia y Tecnología (CONACyT, Mexico) and the IPN for graduate study fellowships. JAC thanks support from the Comité Técnico de Prestaciones a Becarios (COTEPABE, IPN). During the realization of this work, JAC received financial support from the Research Participation Program at the Center for Biologics Evaluation and Research, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and the U.S. Food and Drug Administration. The authors are greatly indebted to Juan L. Arciniega (Food and Drug Administration) and the NIH Helix Systems group for providing access to high-performance computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa M. Ribas-Aparicio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castelán-Vega, J.A., Jiménez-Alberto, A. & Ribas-Aparicio, R.M. Homology modeling and molecular dynamics simulations of HgiDII methyltransferase in complex with DNA and S-adenosyl-methionine: Catalytic mechanism and interactions with DNA. J Mol Model 16, 1213–1222 (2010). https://doi.org/10.1007/s00894-009-0632-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0632-9

Keywords

Navigation