Skip to main content
Log in

An ab initio quantum mechanical drug designing procedure: application to the design of balanced dual ACE/NEP inhibitors

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

This article describes in a sequential fashion how ab initio quantum mechanical methods can be applied to study the pharmacophoric features of drugs. It also describes how accurate drug–receptor interaction calculations can guide the careful design of balanced dual inhibitors, which form an important class of second generation drugs. As an example, the authors have chosen balanced inhibitors of angiotensin converting enzyme/neutral endopeptidase (ACE/NEP) as modern antihypertensive drugs. A unified, accurate, in silico design approach is presented, encompassing all steps from pharmacophore derivation to complete understanding of mechanistic aspects leading to drug design.

Lisinopril docked in angiotensin converting enzyme (ACE) model

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Patrick G (ed) (2002) In: Medicinal Chemistry. BIOS Scientific, Oxford, pp 221–241

  2. Cushman DW, Ondetti MA (1999) Nat Med 5:1110–1113

    Article  CAS  Google Scholar 

  3. Ondetti MA (1994) Annu Rev Pharmacol Toxicol 34:1–16

    CAS  Google Scholar 

  4. Gupta SP (ed) (2006) QSAR and molecular modeling studies in heterocyclic drugs II. Springer, Berlin

  5. Crippen GM (2008) Curr Comp Aided Drug Des 4:259–264

    Article  CAS  Google Scholar 

  6. Zhou P, Tian F, Wu Y, Li Z, Shang Z (2008) Curr Comp Aided Drug Des 4:311–321

    Article  CAS  Google Scholar 

  7. Meng EC, Shoichet BK, Kuntz ID (1992) J Comp Chem 13:505–524

    Article  CAS  Google Scholar 

  8. Breda A, Basso LA, Santos DS, de Azevedo Jr WF (2008) Curr Comp Aided Drug Des 4:265–272

    Article  CAS  Google Scholar 

  9. Dalton JA, Jackson RM (2007) Bioinformatics 23:1901–1908

    Article  CAS  Google Scholar 

  10. Waszkowycz B, Perkins TDJ, Sykes RA, Li J (2001) IBM Syst J 40:360–378

    Google Scholar 

  11. Zhorov BS (1997) Arch Biochem Biophys 341:238–244

    Article  CAS  Google Scholar 

  12. Yadav A, Singh SK (2005) THEOCHEM 723:205–209

    Article  CAS  Google Scholar 

  13. Jain S, Yadav A (2008) Chem Biol Drug Des 71:271–277

    Article  CAS  Google Scholar 

  14. Jandeleit-Dahm K (2006) J Hum Hypertens 20:478–481

    Article  CAS  Google Scholar 

  15. Opie LH (1992) Angiotensin converting enzyme inhibitors. Wiley-Lisa, New York

    Google Scholar 

  16. Edwards C (1985) Lancet 325:30–34

    Article  Google Scholar 

  17. Jackson B, Cubela RB, Conway EL, Johnston CI (1988) J Clin Pharmacol 25:719–724

    CAS  Google Scholar 

  18. Acharya KR, Sturrock ED, Riordan JF, Ehlers MRW (2003) Nat Rev Drug Disc 2:891–902

    Article  CAS  Google Scholar 

  19. Molinaro G, Cugno M, Perez M, Lepage Y, Gervais N, Agostoni A, Adam A (2002) J Pharmacol Exp Ther 303:232–237

    Article  CAS  Google Scholar 

  20. Johnston CI, Hodsman PG, Kohzuki M, Casley DJ, Fabris B, Phillips PA (1989) Am J Med 87:24S–28S

    Article  CAS  Google Scholar 

  21. Wei L, Clauser E, Alhenc Gelas F, Corvol P (1992) J Biol Chem 267:13398–13405

    CAS  Google Scholar 

  22. Ehler MR, Riordan JF (1991) Biochemistry 30:7118–7126

    Article  Google Scholar 

  23. Georgiadis D, Beau F, Czarny B, Cotton I, Yiotakis A, Dive V (2003) Circ Res 93:148–154

    Article  CAS  Google Scholar 

  24. Dive V, Cotton J, Yiotakis A, Michaud A, Vassiliou S, Jiracek J, Vazeux G, Chauvet MT, Cuniasse P, Corvol P (1999) Proc Natl Acad Sci USA 96:4330–4335

    Article  CAS  Google Scholar 

  25. Georgiadis D, Cuniasse P, Cotton J, Yiotakis A, Dive V (2004) Biochemistry 43:8048–8054

    Article  CAS  Google Scholar 

  26. Laurent S, Boutouyrie P, Azizi M, Marie C, Gros C, Schwartz JC, Lecomte JM, Bralet J (2000) Hypertension 35:1148–1153

    CAS  Google Scholar 

  27. Weber M (1999) Am J Hypertens 12:139S–147S

    Article  CAS  Google Scholar 

  28. Leung D, Abbenante G, Fairlie DP (2000) J Med Chem 43:305–341

    Article  CAS  Google Scholar 

  29. Chevillard C, Jouquey S, Bree F, Mathieu M N, Stepniewski J P, Tillement JP, Hamon G, Corvol PJ (1994) Cardiovasc Pharmacol 4[suppl 23]:S1L–SL5

  30. Oefner C, Roques BP, Fournie-Zaluski MC, Dale GE (2004) Acta Crystallogr D 60:392–396

    Article  CAS  Google Scholar 

  31. Marie-Claire C, Ruffet E, Antonczak S, Beaumont A, Donohue MO, Fournie-Zaluski MC (1997) J Biochem 36:13938–13945

    Article  CAS  Google Scholar 

  32. Barthelmebs M, Devissaquet M, Imbs JL (1989) Clin Exp Hypertens A11 [Suppl 2]:471–486

    Google Scholar 

  33. Sagnella GA (2002) J Renin Angiotensin Aldosterone Syst 3:90–95

    Article  CAS  Google Scholar 

  34. Bralet J, Schwartz JC (2001) Trends Pharmacol Sci 22:106–109

    Article  CAS  Google Scholar 

  35. Molineux G, Rouleau J, Adam A (2002) Curr Opin Pharmacol 2:131–141

    Article  Google Scholar 

  36. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) J Comput Chem 17:49–56

    Article  CAS  Google Scholar 

  37. Peng C, Schlegel HB (1994) Israel J Chem 33:449

    Google Scholar 

  38. Petersson GA, Al-Laham MA (1991) J Chem Phys 94:6081–6090

    Article  CAS  Google Scholar 

  39. Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988) J Chem Phys 89:2193–2218

    Article  CAS  Google Scholar 

  40. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  41. Breneman CM, Wiberg KB (1990) J Comput Chem 11:361–373

    Article  CAS  Google Scholar 

  42. Schrodinger (2008) PHASE, Version 3.0. LLC, New York, NY

  43. Dixon SL, Smondyrev AM, Rao SN (2006) Chem Biol Drug Des 67:370–372

    Article  CAS  Google Scholar 

  44. Peitsch MC, Guex N (1997) Electrophoresis 18:2714–2723

    Article  Google Scholar 

  45. Dennington R II, Keith T, Millam J, Eppinnett K, Hovell WL, Gilliland R (2003) GaussView, Version 3.09. Semichem, Shawnee Mission, KS

    Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Wallingford CT

    Google Scholar 

  47. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  48. Schlegel HB (1989) In: Bertran J (ed) New theoretical concepts for understanding organic reactions. Kluwer Academic, Dordrecht, pp 33–53

  49. Natesh R, Schwager SLU, Evans HR, Sturrock ED, Acharya KR (2004) Biochemistry 43:8718–8724

    Article  CAS  Google Scholar 

  50. Oefner C, Roques BP, Fournie-Zaluski MC, Dale GE (2004) Acta Crystallogr D 60:392–396

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support by DST (Department of Science and Technology, New Delhi) project no. SR/S1/PC-06/2004. One of us (N. K. Rao) gratefully acknowledges DST for the Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpita Yadav.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Suppl. 1

Different optimised conformations of Enalaprilat (DOC 259 kb)

Suppl. 2

Bioactive Enalaprilat docked in ACE active site model (best orientation) (DOC 614 kb)

Suppl. 3

Bioactive Enalaprilat docked in ACE active site model (different orientation) (DOC 394 kb)

Suppl. 4

(DOC 25 kb)

(WMV 1536 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, N.K., Yadav, A. & Kumar Singh, S. An ab initio quantum mechanical drug designing procedure: application to the design of balanced dual ACE/NEP inhibitors. J Mol Model 15, 1447–1462 (2009). https://doi.org/10.1007/s00894-009-0500-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0500-7

Keywords

Navigation