Skip to main content

Advertisement

Log in

Molecular dynamics studies on HIV-1 protease: a comparison of the flap motions between wild type protease and the M46I/G51D double mutant

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The emergence of drug-resistant mutants of HIV-1 is a tragic effect associated with conventional long-treatment therapies against acquired immunodeficiency syndrome. These mutations frequently involve the aspartic protease encoded by the virus; knowledge of the molecular mechanisms underlying the conformational changes of HIV-1 protease mutants may be useful in developing more effective and longer lasting treatment regimes. The flap regions of the protease are the target of a particular type of mutations occurring far from the active site. These mutations modify the affinity for both substrate and ligands, thus conferring resistance. In this work, molecular dynamics simulations were performed on a native wild type HIV-1 protease and on the drug-resistant M46I/G51D double mutant. The simulation was carried out for a time of 3.5 ns using the GROMOS96 force field, with implementation of the SPC216 explicit solvation model. The results show that the flaps may exist in an ensemble of conformations between a “closed” and an “open” conformation. The behaviour of the flap tips during simulations is different between the native enzyme and the mutant. The mutation pattern leads to stabilization of the flaps in a semi-open configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Seelmeier S, Schmidt H, Turk V, Von der Helm K (1988) Proc Natl Acad Sci USA 85:6612–6616

    Article  CAS  Google Scholar 

  2. Huff JR (1991) J Med Chem 34:2305–2314

    Article  CAS  Google Scholar 

  3. Tozzini V, Trylska J, Chang C, McCammon JA (2007) J Struct Biol 157:606–615

    Article  CAS  Google Scholar 

  4. Chatfield DC, Brooks BR (1995) J Am Chem Soc 117:5561–5572

    Article  CAS  Google Scholar 

  5. Silva AM, Cachau RE, Sham HL, Erickson JW (1996) J Mol Biol 255:321–340

    Article  CAS  Google Scholar 

  6. Chatfield DC, Eurenius KP, Brooks BR (1998) J Mol Struct 423:79–92

    CAS  Google Scholar 

  7. Ohtaka H, Schon A, Freire E (2003) Biochemistry 42:13659–13666

    Article  CAS  Google Scholar 

  8. Scott WRP, Schiffer CA (2000) Structure 8:1259–1265

    Article  CAS  Google Scholar 

  9. Spinelli S, Liu QZ, Alzari PM, Hirel PH, Poljak RJ (1991) Biochimie 73:1391–1393

    Article  CAS  Google Scholar 

  10. http://www.expasy.org/spdbv/

  11. Oostenbrink C, Villa A, Mark AE, Van Gusteren WF (2004) J Comput Chem 25:1656–1676

    Article  CAS  Google Scholar 

  12. Berendsen HJC, Van der Spoel D, Van Drunen R (1995) Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  13. Lindahl E, Hess B, Van der Spoel D (2001) J Mol Model 7:306–317

    CAS  Google Scholar 

  14. Berendsen HJC, Postma JPM, DiNola A, Haak JR (1984) J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  15. Ferguson DM (1995) J Comp Chem 16:501–511

    Article  CAS  Google Scholar 

  16. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  17. Pedretti A, Villa L, Vistoli, G (2002) J Mol Graph 21:47–49

    Article  CAS  Google Scholar 

  18. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  19. Perryman AL, Lin J-H, McCammon A (2004) Protein Sci 13:1108–1123

    Article  CAS  Google Scholar 

  20. Meiselbach H, Horn AHC, Harrer T, Sticht H (2007) J Mol Model 13:297–304

    Article  CAS  Google Scholar 

  21. Maschera B, Darby G, Palu G, Wright LL, Tisdale M, Myers R, Blair ED, Fufine ES (1996) J Biol Chem 271:33231–33235

    Article  CAS  Google Scholar 

  22. Piana S, Carloni P, Rothlingsberger U (2002) Protein Sci 11:2393–2402

    Article  CAS  Google Scholar 

  23. Wu TD, Schiffer CA, Gonzales MJ, Taylor J, Kantor R, Chou S, Israeliski D, Zolopa AR, Fessel WJ, Shafer RW (2003) J Virol 77:4836–4847

    Article  CAS  Google Scholar 

  24. Tòth G, Borics A (2006) J Mol Graph Model 24:465–474

    Article  Google Scholar 

  25. Ingr M, Uhlìkovà T, Strisovsky K, Majerovà E, Konvalinka J (2003) Protein Sci 12:2173–2182

    Article  CAS  Google Scholar 

  26. Hornak V, Okur A, Rizzo RC, Simmerling C (2006) Proc Natl Acad Sci USA 103:915–920

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonino Lauria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lauria, A., Ippolito, M. & Almerico, A.M. Molecular dynamics studies on HIV-1 protease: a comparison of the flap motions between wild type protease and the M46I/G51D double mutant. J Mol Model 13, 1151–1156 (2007). https://doi.org/10.1007/s00894-007-0242-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-007-0242-3

Keywords

Navigation