Skip to main content

Advertisement

Log in

Structure-based method for analyzing protein–protein interfaces

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Hydrogen bond, hydrophobic and vdW interactions are the three major non-covalent interactions at protein–protein interfaces. We have developed a method that uses only these properties to describe interactions between proteins, which can qualitatively estimate the individual contribution of each interfacial residue to the binding and gives the results in a graphic display way. This method has been applied to analyze alanine mutation data at protein–protein interfaces. A dataset containing 13 protein–protein complexes with 250 alanine mutations of interfacial residues has been tested. For the 75 hot-spot residues (ΔΔG≥1.5 kcal mol-1), 66 can be predicted correctly with a success rate of 88%. In order to test the tolerance of this method to conformational changes upon binding, we utilize a set of 26 complexes with one or both of their components available in the unbound form. The difference of key residues exported by the program is 11% between the results using complexed proteins and those from unbound ones. As this method gives the characteristics of the binding partner for a particular protein, in-depth studies on protein–protein recognition can be carried out. Furthermore, this method can be used to compare the difference between protein–protein interactions and look for correlated mutation.

Figure Key interaction grids at the interface between barnase and barstar. Key interaction grid for barnase and barstar are presented in one figure according to their coordinates. In order to distinguish the two proteins, different icons were assigned. Crosses represent key grids for barstar and dots represent key grids for barnase. The four residues in ball and stick are Asp40 in barstar and Arg83, Arg87, His102 in barnase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4a–c
Fig. 5 a

Similar content being viewed by others

Reference

  1. Lichtarge O, Sowa ME (2002) Curr Opin Struct Biol 12:21–27

    Google Scholar 

  2. Bock JR, Gough DA (2001) Bioinformatics 17:455–460

    Article  CAS  PubMed  Google Scholar 

  3. Kini RM, Evans HJ (1995) Biochem Biophys Res Commun 212:1115–1124

    Article  CAS  PubMed  Google Scholar 

  4. Casari G, Sander C, Valencia A (1995) Nat Struct Biol 2:171–178

    CAS  PubMed  Google Scholar 

  5. Pazos F, Helmer-Citterich M, Ausiello G, Valencia A (1997) J Mol Biol 271:511–523

    CAS  PubMed  Google Scholar 

  6. Gallet X, Charloteaux B, Thomas A, Brasseur R (2000) J Mol Biol 302:917–926

    Article  CAS  PubMed  Google Scholar 

  7. Madabushi S, Yao H, Marsh M, Kristensen DM, Philippi A, Sowa ME, Lichtarge O (2002) J Mol Biol 316:139–154

    Article  CAS  PubMed  Google Scholar 

  8. Aloy P, Russell RB (2002) Proc Natl Acad Sci USA 99:5896–5901

    Article  CAS  PubMed  Google Scholar 

  9. Aloy P, Russell RB (2003) Bioinformatics 19:161–162

    Article  CAS  PubMed  Google Scholar 

  10. Zhou HX, Shan Y (2001) Proteins 44:336–343

    Article  CAS  PubMed  Google Scholar 

  11. Fariselli P, Pazos F, Valencia A, Casadio R (2002) Eur J Biochem 269:1356–1361

    Article  CAS  PubMed  Google Scholar 

  12. Pupko T, Bell RE, Mayrose I, Glaser F, Ben-Tal N (2002) Bioinformatics 18 Suppl 1:S71–7

    Google Scholar 

  13. Wells JA (1991) Methods Enzymology 202:390–411

    CAS  Google Scholar 

  14. Clackson T, Wells JA (1995) Science 267:383–386

    CAS  PubMed  Google Scholar 

  15. Bogan AA, Thorn KS (1998) J Mol Biol 280:1–9

    Article  CAS  PubMed  Google Scholar 

  16. Thorn KS, Bogan AA (2001) Bioinformatics 17:284–285

    Article  CAS  PubMed  Google Scholar 

  17. Jones S, Thornton JM (1996) Proc Natl Acad Sci USA 93:13–20

    CAS  PubMed  Google Scholar 

  18. Lo Conte L, Chothia C, Janin J (1999) J Mol Biol 285:2177–2198

    Article  PubMed  Google Scholar 

  19. Elcock AH, Sept D, McCammon JA (2001) J Phys Chem B 105:1504–1518

    Article  CAS  Google Scholar 

  20. Massova I, Kollman PA (1999) J Am Chem Soc 121:8133–8143

    Article  CAS  Google Scholar 

  21. Huo S, Massova I, Kollman PA (2002) J Comput Chem 23:15–27

    Article  CAS  PubMed  Google Scholar 

  22. Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Freer ST, Rose PW (2002) Proteins 48:539–557

    Article  CAS  PubMed  Google Scholar 

  23. Hu ZJ, Ma BY, Wolfson H, Nussinov R (2000) Proteins 39:331–342

    Article  CAS  PubMed  Google Scholar 

  24. Young L, Jernigan RL, Covell DG. (1994) Protein Sci 3:717–729

    CAS  PubMed  Google Scholar 

  25. Villoutreix BO, Hardig Y, Wallqvist A, Covell DG, Frutos PG (1998) Proteins 31:391–405

    Article  CAS  PubMed  Google Scholar 

  26. Villoutreix BO, Covell DG, Blom AM, Wallqvist A, Friedrich U (2001) J Comput-Aided Mol Des 15:13–27

    Google Scholar 

  27. Goodford PJ (1985) J Med Chem 28:849–857

    CAS  PubMed  Google Scholar 

  28. Gao Y, Wang RX, Lai LH (2002) Acta Phys-Chim Sin 18:676–679

    Google Scholar 

  29. Myers EW, Miller W (1989) Bull Math Biol 51:5–37

    CAS  PubMed  Google Scholar 

  30. Delano WL (2002) Curr Opin Struct Biol 12:14–20

    Google Scholar 

  31. Betts MJ, Sternberg MJ (1999) Protein Eng 12:271–283

    Article  CAS  PubMed  Google Scholar 

  32. Wang RX, Gao Y, Lai LH (2000) J Mol Model 6:498-516

    CAS  Google Scholar 

  33. Wang RX, Liu L, Lai LH, Tang YQ (1998) J Mol Model 4:379–394

    Article  CAS  Google Scholar 

  34. Wang RX, Gao Y, Lai LH (2000) Perspect Drug Discovery 19:47–66

    Article  CAS  Google Scholar 

  35. Buckle AM, Chreiber GS, Fersht AR (1994) Biochem 33:8878–8889

    CAS  PubMed  Google Scholar 

  36. Schreiber G, Fersht AR (1995) J Mol Biol 248:478–486

    Article  CAS  PubMed  Google Scholar 

  37. Covell DG, Wallqvist A (1997) J Mol Biol 269:281–297

    Article  CAS  PubMed  Google Scholar 

  38. Böttger A, Böttger V, Garcia-Echeverria C, Chène P, Hochkeppel HK, Sampson W, Ang K, Howard SF, Picksley SM, Lane DP (1997) J Mol Biol 269:744–756

    Article  PubMed  Google Scholar 

  39. DeLano WL, Ultsch MH, de Vos AM, Wells JM (2000) Science 287:1279–1283

    Article  CAS  PubMed  Google Scholar 

  40. Tong L, Pav S, Pargellis C, Do F, Lamarre D, Anderson PC (1993) Proc Natl Acad Sci USA 90:8387–8391

    CAS  PubMed  Google Scholar 

  41. Goldman ER, Dall’Acqua W, Braden BC, Mariuzza RA (1997) Biochem 36:49–56

    Article  CAS  Google Scholar 

  42. Dall’Acqua W, Goldman ER, Eisenstein E, Mariuzza RA (1996) Biochem 35:9667–9676

    Article  CAS  Google Scholar 

  43. Dall’Acqua W, Goldman ER, Lin W, Teng C, Tsuchiya D, Li HM, Ysern X, Braden BC, Li YL, Smith-Gill SJ, Mariuzza RA (1998) Biochem 37:7981–7991

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work has been supported by the Ministry of Science and Technology of China (the 863 High-tech project and the Basic Research Project 2003CB715900), the National Natural Science Foundation of China and The Committee of Science and Technology of Beijing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luhua Lai.

Appendix

Appendix

Complexed

Unbound protein 1

Unbound protein 2

PDB code

Res (Å)

Protein 1 chain

Protein 2 chain

PDB code

Res (Å)

Chain

PDB code

Res (Å)

Chain

Enzyme–inhibitor complex

1brb

2.1

E

I

1bra

2.2

1cgi

2.3

E

I

1chg

2.5

1hpt

2.3

2kai

2.5

A, B

I

2pka

2.1

A, B

2ptc

1.9

E

I

1bty

1.5

1bpi

1.1

2sic

1.8

E

I

1sup

1.6

3ssi

2.3

2sni

2.1

E

I

2ci2

2.0

1acb

2.0

E

I

5cha

1.7

A

1brc

2.5

E

I

1aap

1.5

A

1cse

1.2

E

I

1scd

2.3

1ppe

2.0

E

I

1lu0

1.03

A

1stf

2.4

E

I

1ppn

1.6

1tgs

1.8

Z

I

1tgt

1.5

2tec

2.0

E

I

1thm

1.4

4htc

2.3

L, H

I

2hnt

2.5

1udi

2.7

E

I

1udh

1.8

1ugi

1.55

A

Antibody–antigen complexes

1mlc

2.1

A, B

E

1mlb

2.1

1lza

1.6

1vfb

1.8

A, B

C

1vfa

1.8

A, B

1lza

1.6

1nca

2.5

L, H

N

7nn9

2.0

1igc

2.6

L,H

A

1igd

1.1

2jel

2.8

L, H

P

1poh

2.0

Other complexes

1atn

2.8

D

A

3dni

2.0

1gla

2.6

G

F

1bu6

2.37

Y

1f3g

2.1

1spb

2.0

S

P

1sup

1.6

2btf

2.6

P

A

1pne

2.0

3hhr

2.8

A

B, C

1hgu

2.5

1mda

2.5

L, H

A

1aan

2.0

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y., Wang, R. & Lai, L. Structure-based method for analyzing protein–protein interfaces. J Mol Model 10, 44–54 (2004). https://doi.org/10.1007/s00894-003-0168-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-003-0168-3

Keywords

Navigation