Skip to main content
Log in

Glutamate kinase from Thermotoga maritima: characterization of a thermophilic enzyme for proline biosynthesis

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Glutamate kinase (GK), an enzyme involved in osmoprotection in plants and microorganisms, catalyses the first and controlling step of proline biosynthesis. The proB gene encoding GK was cloned from the hyperthermophilic bacterium Thermotoga maritima and overexpressed in Escherichia coli, and the resulting protein was purified to homogeneity in three simple steps. T. maritima GK behaved as a tetramer, showing maximal activity at 83°C, and was inhibited by ADP and proline. Although T. maritima GK exhibited high amino acid similarity to the mesophilic E. coli GK, it was less dependent of Mg ions and was not aggregated in the presence of proline. Moreover, it displayed a greater thermostability and higher catalytic efficiency than its mesophilic counterpart at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

tmGK:

Thermotoga maritima glutamate kinase

ecGK:

Escherichia coli glutamate kinase

References

  • Aral B, Kamoun P (1997) The proline biosynthesis in living organisms. Amino Acids 13:189–217

    Article  CAS  Google Scholar 

  • Aravind L, Koonin EV (1999) Novel predicted RNA-binding domains associated with the translation machinery. J Mol Evol 48:291–302

    Article  CAS  Google Scholar 

  • Baumgartner MR, Rabier D, Nassogne MC, Dufier JL, Padovani JP, Kamoun P, Valle D, Saudubray JM (2005) Delta1-pyrroline-5-carboxylate synthase deficiency: neurodegeneration, cataracts and connective tissue manifestations combined with hyperammonaemia and reduced ornithine, citrulline, arginine and proline. Eur J Pediatr 164:31–36

    Article  CAS  Google Scholar 

  • Bergmeyer HU, Horder M, Rej R (1986) International Federation of Clinical Chemistry (IFCC) Scientific Committee, Analytical Section: approved recommendation (1985) on IFCC methods for the measurement of catalytic concentration of enzymes. Part 2. IFCC method for aspartate aminotransferase (l-aspartate: 2-oxoglutarate aminotransferase, EC 2.6.1.1). J Clin Chem Clin Biochem 24:497–510

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chen M, Wei H, Cao J, Liu R, Wang Y, Zheng C (2007) Expression of Bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. J Biochem Mol Biol 40:396–403

    CAS  Google Scholar 

  • Csonka LN, Hanson AD (1991) Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol 45:569–606

    Article  CAS  Google Scholar 

  • Fernandez-Murga ML, Rubio V (2008) Basis of arginine sensitivity of microbial N-acetyl-l-glutamate kinases: mutagenesis and protein engineering study with the Pseudomonas aeruginosa and Escherichia coli enzymes. J Bacteriol 190:3018–3025

    Article  CAS  Google Scholar 

  • Fernandez-Murga ML, Ramon-Maiques S, Gil-Ortiz F, Fita I, Rubio V (2002) Towards structural understanding of feedback control of arginine biosynthesis: cloning and expression of the gene for the arginine-inhibited N-acetyl-l-glutamate kinase from Pseudomonas aeruginosa, purification and crystallization of the recombinant enzyme and preliminary X-ray studies. Acta Crystallogr D Biol Crystallogr 58:1045–1047

    Article  Google Scholar 

  • Fernandez-Murga ML, Gil-Ortiz F, Llacer JL, Rubio V (2004) Arginine biosynthesis in Thermotoga maritima: characterization of the arginine-sensitive N-acetyl-l-glutamate kinase. J Bacteriol 186:6142–6149

    Article  CAS  Google Scholar 

  • Haas D, Leisinger T (1975a) N-acetylglutamate 5-phosphotransferase of Pseudomonas aeruginosa. Catalytic and regulatory properties. Eur J Biochem 52:377–393

    Article  CAS  Google Scholar 

  • Haas D, Leisinger T (1975b) N-acetylglutamate 5-phosphotransferase of Pseudomonas aeruginosa. Purification and ligand-directed association-dissociation. Eur J Biochem 52:365–375

    Article  CAS  Google Scholar 

  • Kaino T, Tateiwa T, Mizukami-Murata S, Shima J, Takagi H (2008) Self-cloning baker’s yeasts that accumulate proline enhance freeze tolerance in doughs. Appl Environ Microbiol 74:5845–5849

    Article  CAS  Google Scholar 

  • Kosuge T, Hoshino T (1998) Construction of a proline-producing mutant of the extremely thermophilic eubacterium Thermus thermophilus HB27. Appl Environ Microbiol 64:4328–4332

    CAS  Google Scholar 

  • Krishna RV, Leisinger T (1979) Biosynthesis of proline in Pseudomonas aeruginosa. Partial purification and characterization of gamma-glutamyl kinase. Biochem J 181:215–222

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Leisinger T (1996) Biosynthesis of proline. In: Neidhardt FC (ed) Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, DC, pp 434–441

    Google Scholar 

  • Lesley SA, Kuhn P, Godzik A, Deacon AM, Mathews I, Kreusch A, Spraggon G, Klock HE, McMullan D, Shin T, Vincent J, Robb A, Brinen LS, Miller MD, McPhillips TM, Miller MA, Scheibe D, Canaves JM, Guda C, Jaroszewski L, Selby TL, Elsliger MA, Wooley J, Taylor SS, Hodgson KO, Wilson IA, Schultz PG, Stevens RC (2002) Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline. Proc Natl Acad Sci USA 99:11664–11669

    Article  CAS  Google Scholar 

  • Marco-Marin C, Ramon-Maiques S, Tavarez S, Rubio V (2003) Site-directed mutagenesis of Escherichia coli acetylglutamate kinase and aspartokinase III probes the catalytic and substrate-binding mechanisms of these amino acid kinase family enzymes and allows three-dimensional modelling of aspartokinase. J Mol Biol 334:459–476

    Article  CAS  Google Scholar 

  • Marco-Marin C, Gil-Ortiz F, Perez-Arellano I, Cervera J, Fita I, Rubio V (2007) A novel two-domain architecture within the amino acid kinase enzyme family revealed by the crystal structure of Escherichia coli glutamate 5-kinase. J Mol Biol 367:1431–1446

    Article  CAS  Google Scholar 

  • Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329

    Google Scholar 

  • Omori K, Suzuki S, Imai Y, Komatsubara S (1992) Analysis of the mutant proBA operon from a proline-producing strain of Serratia marcescens. J Gen Microbiol 138:693–699

    CAS  Google Scholar 

  • Pavlikova D, Pavlik M, Staszkova L, Motyka V, Szakova J, Tlustos P, Balik J (2008) Glutamate kinase as a potential biomarker of heavy metal stress in plants. Ecotoxicol Environ Saf 70:223–230

    Article  CAS  Google Scholar 

  • Perez-Arellano I, Gil-Ortiz F, Cervera J, Rubio V (2004) Glutamate-5-kinase from Escherichia coli: gene cloning, overexpression, purification and crystallization of the recombinant enzyme and preliminary X-ray studies. Acta Crystallogr D Biol Crystallogr 60:2091–2094

    Article  Google Scholar 

  • Perez-Arellano I, Rubio V, Cervera J (2005) Dissection of Escherichia coli glutamate 5-kinase: functional impact of the deletion of the PUA domain. FEBS Lett 579:6903–6908

    Article  CAS  Google Scholar 

  • Perez-Arellano I, Rubio V, Cervera J (2006) Mapping active site residues in glutamate-5-kinase. The substrate glutamate and the feed-back inhibitor proline bind at overlapping sites. FEBS Lett 580:6247–6253

    Article  CAS  Google Scholar 

  • Perez-Arellano I, Gallego J, Cervera J (2007) The PUA domain—a structural and functional overview. FEBS J 274:4972–4984

    Article  CAS  Google Scholar 

  • Ramon-Maiques S, Marina A, Gil-Ortiz F, Fita I, Rubio V (2002) Structure of acetylglutamate kinase, a key enzyme for arginine biosynthesis and a prototype for the amino acid kinase enzyme family, during catalysis. Structure 10:329–342

    Article  CAS  Google Scholar 

  • Ramon-Maiques S, Fernandez-Murga ML, Gil-Ortiz F, Vagin A, Fita I, Rubio V (2006) Structural bases of feed-back control of arginine biosynthesis, revealed by the structures of two hexameric N-acetylglutamate kinases, from Thermotoga maritima and Pseudomonas aeruginosa. J Mol Biol 356:695–713

    Article  CAS  Google Scholar 

  • Seddon AP, Zhao KY, Meister A (1989) Activation of glutamate by gamma-glutamate kinase: formation of gamma-cis-cycloglutamyl phosphate, an analog of gamma-glutamyl phosphate. J Biol Chem 264:11326–11335

    CAS  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060

    Article  CAS  Google Scholar 

  • Smith LT (1985) Characterization of a gamma-glutamyl kinase from Escherichia coli that confers proline overproduction and osmotic tolerance. J Bacteriol 164:1088–1093

    CAS  Google Scholar 

  • Takagi H (2008) Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl Microbiol Biotechnol 81:211–223

    Article  CAS  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  CAS  Google Scholar 

  • Wondrak GT, Jacobson MK, Jacobson EL (2005) Identification of quenchers of photoexcited states as novel agents for skin photoprotection. J Pharmacol Exp Ther 312:482–491

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Vicente Rubio for kindly providing the cDNA of T. maritima and the plasmid pGroESL, and Ana Isabel Martínez and Jesús Rodríguez for their helpful insight. The proteomic molecular weight fingerprinting by MS-MALDI-TOF analysis was carried out in the Centro de Investigación Príncipe Felipe, which is a member of the ProteoRed network. This work was financed by Grants BFU 2007/66781 and CIBERER739.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Cervera.

Additional information

Communicated by F. Robb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Arellano, I., Cervera, J. Glutamate kinase from Thermotoga maritima: characterization of a thermophilic enzyme for proline biosynthesis. Extremophiles 14, 409–415 (2010). https://doi.org/10.1007/s00792-010-0320-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-010-0320-9

Keywords

Navigation