Skip to main content

Advertisement

Log in

Protistan community patterns within the brine and halocline of deep hypersaline anoxic basins in the eastern Mediterranean Sea

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Environmental factors restrict the distribution of microbial eukaryotes but the exact boundaries for eukaryotic life are not known. Here, we examine protistan communities at the extremes of salinity and osmotic pressure, and report rich assemblages inhabiting Bannock and Discovery, two deep-sea superhaline anoxic basins in the Mediterranean. Using a rRNA-based approach, we detected 1,538 protistan rRNA gene sequences from water samples with total salinity ranging from 39 to 280 g/Kg, and obtained evidence that this DNA was endogenous to the extreme habitat sampled. Statistical analyses indicate that the discovered phylotypes represent only a fraction of species actually inhabiting both the brine and the brine-seawater interface, with as much as 82% of the actual richness missed by our survey. Jaccard indices (e.g., for a comparison of community membership) suggest that the brine/interface protistan communities are unique to Bannock and Discovery basins, and share little (0.8–2.8%) in species composition with overlying waters with typical marine salinity and oxygen tension. The protistan communities from the basins’ brine and brine/seawater interface appear to be particularly enriched with dinoflagellates, ciliates and other alveolates, as well as fungi, and are conspicuously poor in stramenopiles. The uniqueness and diversity of brine and brine-interface protistan communities make them promising targets for protistan discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DHAB:

Deep hypersaline anoxic basin

UMA:

Uncultured marine alveolate clade

References

  • Azam F, Fenchel T, Field J, Gray J, Meyer-Reil L, Thingstad F (1983) The ecological role of water column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  • Beaver JR, Crisman TL (1982) The trophic response of ciliated protozoans in freshwater lakes. Limnol Oceanogr 27:246–253

    Article  Google Scholar 

  • Behnke A, Bunge J, Barger K, Breiner HW, Alla V, Stoeck T (2006) Microeukaryote community patterns along an O2/H2S gradient in a supersulfidic anoxic Fjord (Framvaren, Norway). Appl Environ Microbiol 72:3626–3636

    Article  PubMed  CAS  Google Scholar 

  • Camerlenghi A (1990) Anoxic basins of the eastern Mediterranean: geological framework. Mar Chem 31:1–19

    Article  CAS  Google Scholar 

  • Chao A, Shen TJ (2003–2005) http://chao.stat.nthu.edu.tw

  • Chao A, Chazdon RL, Colwell RK, Shen TJ (2006) Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62:361–371

    Article  PubMed  Google Scholar 

  • Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA et al (2003) The ribosomal database project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443

    Article  PubMed  CAS  Google Scholar 

  • Coleman RG (1993) Geological evolution of the Red Sea, vol 24. Clarendon Press, Oxford, p 138

  • Countway PD, Gast RJ, Dennett MR, Savai P, Rose JM, Caron DA (2007) Distinct protistan assemblages characterize the euphotic zone and deep sea (2500 m) of the western North Atlantic (Sargasso Sea and Gulf Stream). Environ Microbiol 9:1219–1232

    Article  PubMed  CAS  Google Scholar 

  • Daffonchio D, Borin S, Brusa T, Brusetti L, van der Wielen PW, Bolhuis H et al (2006) Stratified prokaryote network in the oxic-anoxic transition of a deep-sea halocline. Nature 440:203–207

    Article  PubMed  CAS  Google Scholar 

  • Danovaro R, Corinaldesi C, Dell’Anno A, Fabiano M, Corselli C (2005) Viruses, prokaryotes and DNA in the sediments of a deep-hypersaline anoxic basin (DHAB) of the Mediterranean Sea. Environ Microbiol 7:586–592

    Article  PubMed  CAS  Google Scholar 

  • Dawson SC, Pace NR (2002) Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci USA 99:8324–8329

    Article  PubMed  CAS  Google Scholar 

  • de Lange GJ, Middelburg JJ, van der Weijden CH, Catalano G, Luther IGW, Hydes DJ et al (1990) Composition of anoxic hypersaline brines in the Tyro and Bannock Basins, eastern Mediterranean. Mar Chem 31:63–88

    Article  Google Scholar 

  • Dighton J (2003) Fungi in ecosystem processes, vol. 17, 1st edn. Marcel Dekker Inc, New York

    Google Scholar 

  • Dumitru R, Hornby JM, Nickerson KW (2004) Defined anaerobic growth medium for studying Candida albicans basic biology and resistance to eight antifungal drugs. Antimicrob Agents Chemother 48:2350–2354

    Article  PubMed  CAS  Google Scholar 

  • Eder W, Ludwig W, Huber R (1999) Novel 16S rRNA gene sequences retrieved from highly saline brine sediments of kebrit deep, red Sea. Arch Microbiol 172:213–218

    Article  PubMed  CAS  Google Scholar 

  • Eder W, Jahnke LL, Schmidt M, Huber R (2001) Microbial diversity of the brine-seawater interface of the Kebrit Deep, Red Sea, studied via 16S rRNA gene sequences and cultivation methods. Appl Environ Microbiol 67:3077–3085

    Article  PubMed  CAS  Google Scholar 

  • Eder W, Schmidt M, Koch M, Garbe-Schonberg D, Huber R (2002) Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine-seawater interface of the Shaban Deep, Red Sea. Environ Microbiol 4:758–763

    Article  PubMed  CAS  Google Scholar 

  • Edgcomb VP, Kysela DT, Teske A, de Vera Gomez A, Sogin ML (2002) Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl Acad Sci USA 99:7658–7662

    Article  PubMed  CAS  Google Scholar 

  • Ehrenberg CC (1838) Die Infusionstierchen als vollkommene Organismen. Ein Blick in das tiefere organische Leben der Natur. Voss: Leipzig, Germany, 547 pp

  • Elloumi J, Carrias J-F, Ayadi H, Sime-Ngando T, Boukhris M, Bouaïn A (2006) Composition and distribution of planktonic ciliates from ponds of different salinity in the solar saltwork of Sfax, Tunisia. Estuar Coast Shelf Sci 67:21–29

    Article  Google Scholar 

  • Epstein SS (1995) Simultaneous enumeration of protozoa and micrometazoa from marine sandy sediments. Aquat Microb Ecol 9:219–227

    Article  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8:186–194

    PubMed  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  • Fell JW, Boekhout T, Fonseca A, Sampaio JP (2001) Basidiomycetous yeast. In: McLaughlin EG, Lemke PA (eds) The mycota: systemics and evolution, 1st edn. Springer, Berlin

    Google Scholar 

  • Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, dos Santos VAPM, Yakimov MM et al (2005) Microbial enzymes mined from the Urania deep-sea hypersaline anoxic basin. Chem Biol 12:895–904

    Article  PubMed  CAS  Google Scholar 

  • Finlay BJ (1990) Physiological ecology of free-living protozoa. Adv Microbiol Ecol 11:1–34

    CAS  Google Scholar 

  • Foissner W (2008) Diversity and distribution of ciliates (Protista: Ciliophora). Biodivers Conserv 17:345–363

    Article  Google Scholar 

  • Gates MA, Rogerson A, Berger J (1982) Dry to wet weight biomass conversion constant for Tetrahymena elliott. Oecologia 55:145–148

    Article  Google Scholar 

  • Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitasd A (2000) Hypersaline waters in salterns—natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240

    CAS  Google Scholar 

  • Gunde-Cimerman N, Oren A, Plemenitasd A (2005). Adaptation to life at high salt concentrations in archaea, bacteria and eukarya. Springer, Dordrecht, p 577

  • Hallsworth JE, Yakimov MM, Golyshin PN, Gillion JL, D’Auria G, Lima Alves F et al (2007) Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environ Microbiol 9:801–813

    Article  PubMed  CAS  Google Scholar 

  • Hauer G, Rogerson A (2005) Heterotrophic protozoa from hypersaline environments. In: Gunde-Cimerman N, Oren A, Plemenitasd A (eds) Adaptation to life at high salt concentrations in archaea, bacteria, and eukarya. Springer, Dordrecht, pp 519–540

    Chapter  Google Scholar 

  • Hong SH, Bunge J, Jeon SO, Epstein SS (2006) Predicting microbial species richness. Proc Natl Acad Sci USA 103:117–122

    Article  PubMed  CAS  Google Scholar 

  • Horowitz NH, Cameron RE, Hubbard JS (1972) Microbiology of the dry valleys of Antarctica. Science 176:242–245

    Article  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Javor B (1989) Hypersaline environments, microbiology and biogeochemistry. Springer, Berlin

    Google Scholar 

  • Jeon SO, Bunge J, Stoeck T, Barger K, Hong S-H, Epstein S (2006) Synthetic statistical approach reveals a high degree of richness of microbial eukaryotes in an anoxic water column. Appl Environ Microbiol 72:6578–6583

    Article  PubMed  CAS  Google Scholar 

  • Kahl DM (1930–1935) Urtiere oder Protozoa I. Gustav Fischer: Jena, Germany

  • Kis-Papo T, Grishkan I, Oren A, Wasser SP, Nevo E (2001) Spatiotemporal diversity of filamentous fungi in the hypersaline Dead Sea. Mycol Res 105:749–756

    Article  Google Scholar 

  • López-García P, Rodríguez-Valera F, Pedrós-Alió C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607

    Article  PubMed  Google Scholar 

  • López-García P, Philippe H, Gail F, Moreira D (2003) Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc Natl Acad Sci USA 100:697–702

    Article  PubMed  CAS  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

  • Luo Q, Krumholz LR, Najar FZ, Peacock AD, Roe BA, White DC et al (2005) Diversity of the microeukaryotic community in sulfide-rich Zodletone Spring (Oklahoma). Appl Environ Microbiol 71:6175–6184

    Article  PubMed  CAS  Google Scholar 

  • Mansfield SD, Barlocher F (1993) Seasonal variation of fungal biomass in the sediment of a salt marsh in New Brunswick. Microb Ecol 26:37–45

    Article  Google Scholar 

  • Massana R, Guillou L, Díez B, Pedrós-Alió C (2002) Unveiling the organisms behind novel eukaryotic ribosomal DNA sequences from the ocean. Appl Environ Microbiol 68:4554–4558

    Article  PubMed  CAS  Google Scholar 

  • Massana R, Balagué V, Guillou L, Pedrós-Alió C (2004a) Picoeukaryotic diversity in an oligotrophic coastal site studied by molecular and culturing approaches. FEMS Microbiol Ecol 50:231–243

    Article  CAS  PubMed  Google Scholar 

  • Massana R, Castresana J, Balagué V, Guillou L, Romari K, Groisillier A et al (2004b) Phylogenetic and ecological analysis of novel marine stramenopiles. Appl Environ Microbiol 70:3528–3534

    Article  PubMed  CAS  Google Scholar 

  • Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71:491–499

    Article  PubMed  CAS  Google Scholar 

  • Moon-van der Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610

    Article  PubMed  CAS  Google Scholar 

  • Nagahama T, Hamamoto M, Nakase T, Takaki Y, Horikoshi K (2003) Cryptococcus surugaensis sp. nov., a novel yeast species from sediment collected on the deep-sea floor of Suruga Bay. Int J Syst Evol Microbiol 53:2095–2098

    Article  PubMed  CAS  Google Scholar 

  • Not F, Gausling R, Azam F, Heidelberg JF, Worden AZ (2007) Vertical distribution of picoeukaryotic diversity in the Sargasso Sea. Environ Microbiol 9:1233–1252

    Article  PubMed  CAS  Google Scholar 

  • Oren A (1999) Microbiological studies in the Dead Sea: future challenges toward the understanding of life at the limit of salt concentrations. Hydrobiologia 405:1–9

    Article  CAS  Google Scholar 

  • Oren A (2000) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63

    Article  CAS  Google Scholar 

  • Oren A (2002) Halophilic microorganisms and their environments. Kluwer Academic Publishers, Dordrecht, p 575

  • Pedrós-Alió C, Calderón-Paz JI, MacLean MH, Medina G, Marrasé C, Gasol JM et al (2000) The microbial food web along salinity gradients. FEMS Microbiol Ecol 32:143–155

    PubMed  Google Scholar 

  • Por F (1980) A classification of hypersaline waters, based on trophic criteria. Mar Ecol 1:121–131

    Article  Google Scholar 

  • Posada D, Crandall KA (2001) Selecting the best-fit model of nucleotide substitution. Syst Biol 50:580–601

    Article  PubMed  CAS  Google Scholar 

  • Ramos-Cormenzana A (1991) Halophilic organisms and their environment. In: Rodríguez-Valera F (ed) General and applied aspects of halophilic microorganisms. Plenum Press, New York, pp 15–24

    Google Scholar 

  • Romari K, Vaulot D (2004) Composition and temporal variability of picoeukaryote communities at a coastal site of the English Channel from 18S rDNA sequences. Limnol Oceanogr 49:784–798

    Google Scholar 

  • Sass AM, Sass H, Coolen MJ, Cypionka H, Overmann J (2001) Microbial communities in the chemocline of a hypersaline deep-sea basin (Urania basin, Mediterranean Sea). Appl Environ Microbiol 67:5392–5402

    Article  PubMed  CAS  Google Scholar 

  • Siegel BZ, McMurty G, Siegel SM, Chen J, Larock P (1979) Life in the calcium-chloride environment of Don-Juan Pond, Antarctica. Nature 280:828–829

    Article  Google Scholar 

  • Sonderegger M, Jeppsson M, Hahn-Hagerdal B, Sauer U (2004) Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl Environ Microbiol 70:2307–2317

    Article  PubMed  CAS  Google Scholar 

  • Stoeck T, Epstein S (2003) Novel eukaryotic lineages inferred from small-subunit rRNA analyses of oxygen-depleted marine environments. Appl Environ Microbiol 69:2657–2663

    Article  PubMed  CAS  Google Scholar 

  • Stoeck T, Fowle WH, Epstein SS (2003a) Methodology of protistan discovery: from rRNA detection to quality scanning electron microscope images. Appl Environ Microbiol 69:6856–6863

    Article  PubMed  CAS  Google Scholar 

  • Stoeck T, Taylor GT, Epstein SS (2003b) Novel eukaryotes from the permanently anoxic Cariaco Basin (Caribbean Sea). Appl Environ Microbiol 69:5656–5663

    Article  PubMed  CAS  Google Scholar 

  • Stoeck T, Hayward B, Taylor GT, Varela R, Epstein SS (2006) A multiple PCR-primer approach to access the microeukaryotic diversity in environmental samples. Protist 157:31–43

    Article  PubMed  CAS  Google Scholar 

  • Stoeck T, Kasper J, Bunge J, Leslin C, Ilyin V, Epstein S (2007) Protistan diversity in the arctic: a case of paleoclimate shaping modern biodiversity? PLoS ONE 2:e728

    Article  PubMed  CAS  Google Scholar 

  • Stoecker DK (1999) Mixotrophy among dinoflagellates. J Euk Microbiol 46:397–401

    Article  Google Scholar 

  • Swofford DL (2002) Sinauer Associates Inc., Sunderland, MA

  • Takishita K, Yubuki N, Kakizoe N, Inagaki Y, Maruyama T (2007) Diversity of microbial eukaryotes in sediment at a deep-sea methane cold seep: surveys of ribosomal DNA libraries from raw sediment samples and two enrichment cultures. Extremophiles 11:563–576

    Article  PubMed  CAS  Google Scholar 

  • Taylor GT, Scranton MI, Iabichella I, Ho T-Y, Thunell RC, Muller-Karger F et al (2001) Chemoautotrophy in the redox transition zone of the Cariaco Basin: a significant midwater source of organic carbon production. Limnol Oceanogr 46:148–163

    CAS  Google Scholar 

  • Taylor GT, Labichella-Armas M, Varela R, Müller-Karger F, Lin X, Scranton MI (2006) Microbial ecology of the Cariaco basin’s redoxcline. In: Neretin NL (ed) Past and present water column anoxia. Springer, Dordrecht, pp 473–499

    Google Scholar 

  • van der Wielen PW, Heijs SK (2007) Sulfate-reducing prokaryotic communities in two deep hypersaline anoxic basins in the Eastern Mediterranean deep sea. Environ Microbiol 9:1335–1340

    Article  PubMed  CAS  Google Scholar 

  • van der Wielen PW, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L et al (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307:121–123

    Article  PubMed  CAS  Google Scholar 

  • Wallmann KJ, Suess E, Westbrook GH, Winckler G, Cita MB (1997) Salty brines on the Mediterranean sea floor. Nature 387:31–32

    Article  CAS  Google Scholar 

  • Wallmann K, Aghib FS, Castradori D, Cita MB, Suess E, Greinert J et al (2002) Sedimentation and formation of secondary minerals in the hypersaline Discovery Basin, eastern Mediterranean. Mar Geol 186:9–28

    Article  CAS  Google Scholar 

  • Worden AZ (2006) Picoeukaryote diversity in coastal waters of the Pacific Ocean. Aquat Microb Ecol 43:165–175

    Article  Google Scholar 

  • Wright AD, Colorni A (2002) Taxonomic re-assignment of Cryptocaryon irritans, a marine fish parasite. Europ J Protistol 37:375–378

    Article  Google Scholar 

  • Yakimov MM, Giuliano L, Cappello S, Denaro R, Golyshin PN (2007a) Microbial community of a hydrothermal mud vent underneath the deep-sea anoxic brine lake Urania (eastern Mediterranean). Orig Life Evol Biosph 37:177–188

    Article  PubMed  Google Scholar 

  • Yakimov MM, La Cono V, Denaro R, D’Auria G, Decembrini F, Timmis KN et al (2007b) Primary producing prokaryotic communities of brine, interface and seawater above the halocline of deep anoxic lake L’Atalante, Eastern Mediterranean Sea. ISME J 1:743–755

    Article  PubMed  CAS  Google Scholar 

  • Zubkov MV, Burkhill PH, Topping J (2007) Flow cytometric enumeration of DNA-stained oceanic planktonic protists. J Plankt Res 29:79–86

    Article  CAS  Google Scholar 

  • Zuendorf A, Behnke A, Bunge J, Barger K, Stoeck T (2006) Diversity estimates of microeukaryotes below the chemocline of the anoxic Mariager Fjord, Denmark. FEMS Microbiol Ecol 58:476–491

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grant STO414/2-4 of the Deutsche Forschungsgemeinschaft, the EuroDEEP program of the European Science Foundation under 06-EuroDEEP-FP-004 MIDDLE project and NSF-grant MCB-0348341 VE wishes to acknowledge Dr. Hilary Morrison and Rich Fox of the Marine Biological Laboratory, Woods Hole for the development and adaptation of their pipeline scripts for processing the sequence data for this study. We thank Linda Woodard for overseeing the richness calculations. This research was conducted using the resources of the Cornell University Center for Advanced Computing, which receives funding from Cornell University, New York State, the National Science Foundation, and other leading public agencies, foundations, and corporations. We thank the captain and the crew of RV Urania for their expert handling of our casts and equipment and for highly productive oceanographic cruises.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Stoeck.

Additional information

Communicated by H. Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edgcomb, V., Orsi, W., Leslin, C. et al. Protistan community patterns within the brine and halocline of deep hypersaline anoxic basins in the eastern Mediterranean Sea. Extremophiles 13, 151–167 (2009). https://doi.org/10.1007/s00792-008-0206-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-008-0206-2

Keywords

Navigation