Skip to main content
Log in

Intrinsic halotolerance of the psychrophilic α-amylase from Pseudoalteromonas haloplanktis

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The halotolerance of a cold adapted α-amylase from the psychrophilic bacterium Pseudoalteromonas haloplanktis (AHA) was investigated. AHA exhibited hydrolytic activity over a broad range of NaCl concentrations (0.01–4.5 M). AHA showed 28% increased activity in 0.5–2.0 M NaCl compared to that in 0.01 M NaCl. In contrast, the corresponding mesophilic (Bacillus amyloliquefaciens) and thermostable (B. licheniformis) α-amylases showed a 39 and 46% decrease in activity respectively. Even at 4.5 M NaCl, 80% of the initial activity was detected for AHA, whereas the mesophilic and thermostable enzymes were inactive. Besides an unaltered fluorescence emission and secondary structure, a 10°C positive shift in the temperature optimum, a stabilization factor of >5 for thermal inactivation and a ΔT m of 8.3°C for the secondary structure melting were estimated in 2.7 M NaCl. The higher activation energy, half-life time and T m indicated reduced conformational dynamics and increased rigidity in the presence of higher NaCl concentrations. A comparison with the sequences of other halophilic α-amylases revealed that AHA also contains higher proportion of small hydrophobic residues and acidic residues resulting in a higher negative surface potential. Thus, with some compromise in cold activity, psychrophilic adaptation has also manifested halotolerance to AHA that is comparable to the halophilic enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AHA:

Pseudoalteromonas haloplanktis α-amylase

PPA:

Porcine pancreatic α-amylase

BAA:

Bacillus amyloliquefaciens α-amylase

BLA:

Bacillus licheniformis α-amylase

References

  • Aghajari N, Feller G, Gerday C, Haser R (1998) Structures of the psychrophilic Alteromonas haloplanctis α-amylase give insights into cold adaptation at a molecular level. Structure 6:1503–1516

    Article  PubMed  CAS  Google Scholar 

  • Aghajari N, Feller G, Gerday C, Haser R (2002) Structural basis of α-amylase activation by chloride. Protein Sci 11:1435–1441

    Article  PubMed  CAS  Google Scholar 

  • Coronado M, Vargas C, Hofemeister J, Ventosa A, Nieto JJ (2000) Production and biochemical characterization of an α-amylase from the moderate halophile Halomonas meridiana. FEMS Microbiol Lett 183:67–71

    PubMed  CAS  Google Scholar 

  • D’Amico S, Gerday C, Feller G (2001) Structural determinants of cold adaptation and stability in a large protein. J Biol Chem 276:25791–25796

    Article  PubMed  CAS  Google Scholar 

  • D’Amico S, Marx J-C, Gerday C, Feller G (2003) Activity-stability relationships in extremophilic enzymes. J Biol Chem 278:7891–7896

    Article  PubMed  CAS  Google Scholar 

  • Danson MJ, Hough DW (1997) The structural basis of protein halophilicity. Comp Biochem Physiol 117A:307–312

    Article  CAS  Google Scholar 

  • Dym O, Mevarech M, Sussman JL (1994) Structural features that stabilize halophilic malate dehydrogenase from an archaebacterium. Science 267:1344–1346

    Article  Google Scholar 

  • Feller G (2003) Molecular adaptations to cold in psychrophilic enzymes. Cell Mol Life Sci 60:648–662

    Article  PubMed  CAS  Google Scholar 

  • Feller G, D’Amico S, Gerday C (1999) Thermodynamic stability of a cold-active α-amylase from the Antarctic bacterium Alteromonas haloplanktis. Biochemistry 38:4613–4619

    Article  PubMed  CAS  Google Scholar 

  • Feller G, Lonhienne T, Deroanne C, Libioulle C, Beeumen JV, Gerday C (1992) Purification, characterization, and nucleotide sequence of the thermolabile α-amylase from the Antarctic psychrotroph Alteromonas haloplanctis A23. J Biol Chem 267:5217–5221

    PubMed  CAS  Google Scholar 

  • Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A, Marx J-C, Sonan G, Feller G, Gerday C (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28:25–42

    Article  PubMed  CAS  Google Scholar 

  • Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18:103–107

    Article  PubMed  CAS  Google Scholar 

  • Hutcheon GW, Vasisht N, Bolhuis A (2005) Characterisation of a highly stable α-amylase from the halophilic archaeon Haloarcula hispanica. Extremophiles 6:487–495

    Article  CAS  Google Scholar 

  • Ishibashi M, Arakawa T, Philo JS, Sakashita K, Yonezawa Y, Tokunaga H, Tokunaga M (2002) Secondary and quaternary structural transition of the halophilic archaeon nucleotide diphosphate kinase under high- and low-salt conditions. FEMS Microbiol Lett 216:235–241

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Kanai H, Aono R, Horikoshi K, Kudo T (1994) Cloning, expression, and nucleotide sequence of the α-amylase gene from the haloalkaliphilic archaeon Natronococcus sp strain Ah-36. J Bacteriol 176:5131–5134

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall R (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Machius M, Declerck N, Huber R, Wiegand G (1998) Activation of Bacillus licheniformis α-amylase through a disorder→order transition of the substrate-binding site mediated by a calcium–sodium–calcium metal triad. Structure 6:281–292

    Article  PubMed  CAS  Google Scholar 

  • Madern D, Camacho M, Rodriguez-Arnedo A, Bonete MJ, Zaccai G (2004) Salt-dependent studies of NADP-dependent isocitrate dehydrogenase from the halophilic archaeon Haloferax volcanii. Extremophiles 8:377–384

    Article  PubMed  CAS  Google Scholar 

  • Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzyme. Extremophiles 4:91–98

    Article  PubMed  CAS  Google Scholar 

  • Madern D, Zaccai G (2004) Molecular adaptation: the malate dehydrogenase from the extreme halophilic bacterium Salinibacter ruber behaves like a non-halophilic protein. Biochimie 86:295–303

    Article  PubMed  CAS  Google Scholar 

  • Madigan MT, Marrs BL (1997) Extremophiles. Sci Am 276:82–87

    Article  PubMed  CAS  Google Scholar 

  • Mevarech M, Frolow F, Gloss LM (2000) Halophilic enzymes: proteins with a grain of salt. Biophys Chem 86:155–164

    Article  PubMed  CAS  Google Scholar 

  • Perez-Pomares F, Bautista V, Ferrer J, Pire C, Marhuenda-Egea FC, Bonete MJ (2003) α-Amylase activity from the halophilic archaeon Haloferax mediterranei. Extremophiles 7:299–306

    Article  PubMed  CAS  Google Scholar 

  • Pflüger K, Müller V (2004) Transport of compatible solutes in extremophiles. J Bioenerg Biomembr 36:17–24

    Article  PubMed  Google Scholar 

  • Polosina YY, Zamyatkin DF, Kostyukova AS, Filimonov VV, Fedorov OV (2002) Stability of Natrialba magadii NDPKinase: comparisons with other halophilic proteins. Extremophiles 6:135–142

    Article  PubMed  CAS  Google Scholar 

  • Premkumar L, Greenblatt HM, Bageshwar UK, Savchenko T, Gokhman I, Sussman JL, Zamir A (2005) Three-dimensional structure of a halotolerant algal carbonic anhydrase predicts halotolerance of a mammalian homolog. Proc Natl Acad Sci USA 102:7493–7498

    Article  PubMed  CAS  Google Scholar 

  • Record MTJ, Zhang W, Anderson CF (1998) Analysis of effects of salts and uncharged solutes on protein and nucleic acid equilibria and processes: a practical guide to recognizing and interpreting polyelectric effects, Hofmeister effects and osmotic effects of salts. Adv Protein Chem 51:281–353

    PubMed  CAS  Google Scholar 

  • Siddiqui KS, Poljak A, Guilhaus M, Feller G, D’Amico S, Gerday C, Cavicchioli R (2005) Role of disulfide bridges in the activity and stability of a cold-active α-amylase. J Bacteriol 187:6206–6212

    Article  PubMed  CAS  Google Scholar 

  • Sivakumar N, Li N, Tang JW, Patel BK, Swaminathan K (2006) Crystal structure of AmyA lacks acidic surface and provide insights into protein stability at poly-extreme condition. FEBS Lett 580:2646–2652

    Article  PubMed  CAS  Google Scholar 

  • Smalås AO, Heimstad ES, Hordvik A, Willassen NP, Male R (1994) Cold adaptation of enzymes: structural comparison between salmon and bovine trypsins. Proteins 20:149–166

    Article  PubMed  Google Scholar 

  • Srimathi S, Jayaraman G (2005) Effect of glycosylation on the catalytic and conformational stability of homologous α-amylases. Protein J 24:79–88

    Article  PubMed  CAS  Google Scholar 

  • Sundaram PV, Srimathi S (2004) Analysis of catalytic and structural stability of native and covalently modified enzymes. In: Svendsen A (ed) Enzyme functionality: design, engineering and screening. Marcel Dekker, New York, pp 632–661

    Google Scholar 

  • Timasheff SN (1998) Control of protein stability and reactions by weakly interacting cosolvents: the simplicity of the complicated. Adv Protein Chem 51:355–432

    Article  PubMed  CAS  Google Scholar 

  • Venkatesh R, Srimathi S, Yamuna A, Jayaraman G (2005) Enhanced catalytic and conformational stability of Atlantic cod trypsin upon neoglycosylation. Biochim Biophys Acta 1722:113–115

    PubMed  CAS  Google Scholar 

  • Wright DB, Banks DD, Lohman JR, Hilsenbeck JL, Gloss LM (2002) The effect of salts on the activity and stability of Escherichia coli and Haloferax volcanii dihydrofolate reductases. J Mol Biol 323:327–344

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Department of Biotechnology, Ministry of Science and Technology, Government of India. SS was partly supported by Swedish Institute Scholarship. We acknowledge Dr. Michael Danson, Dr. Sussan Crenell and Sridhar for the valuable inputs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soundararajan Srimathi or Paranji R. Narayanan.

Additional information

Communicated by F. Robb.

This article is dedicated to Late Dr. P. V. Sundaram.

Electronic supplementary material

Below is the link to the electronic supplementary material.

792_2007_62_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srimathi, S., Jayaraman, G., Feller, G. et al. Intrinsic halotolerance of the psychrophilic α-amylase from Pseudoalteromonas haloplanktis . Extremophiles 11, 505–515 (2007). https://doi.org/10.1007/s00792-007-0062-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-007-0062-5

Keywords

Navigation