Skip to main content

Advertisement

Log in

In situ monitoring by quantitative Raman spectroscopy of alcoholic fermentation by Saccharomyces cerevisiae under high pressure

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

We monitored alcoholic fermentation in Saccharomyces cerevisiae as a function of high hydrostatic pressure. Ethanol production from 0.15 M glucose was measured by Raman spectroscopy in situ in a diamond-anvil cell. At 10 MPa, fermentation proceeds three times faster than at ambient pressure and the fermentation yield is enhanced by 5% after 24 h. Above 20 MPa, the reaction kinetics slows down with increasing pressure. The pressure above which no more ethanol is produced is calculated to be 87 ± 7 MPa. These results indicate that the activity of one or several enzymes of the glycolytic pathway is enhanced at low pressure up to 10 MPa. At higher pressures, they become progressively repressed, and they are completely inhibited above 87 MPa. Although fermentation was predicted to stop at ca. 50 MPa, due to the loss of activity of phosphofructokinase, the present study demonstrates that there is still an activity of ca. 30% of that measured at ambient pressure at 65 MPa. This study also validates the use of Raman spectroscopy for monitoring the metabolism of living microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aarnoutse PJ, Westerhuis JA (2005) Quantitative Raman reaction monitoring using the solvent as internal standard. Anal Chem 77:1228–1236

    Article  PubMed  CAS  Google Scholar 

  • Abe F (2004) Piezophysiology of yeast: occurence and significance. Cell Mol Biol 50:437–445

    PubMed  CAS  Google Scholar 

  • Abe F, Horikoshi K (1995) Hydrostatic pressure promotes the acidification of vacuoles in Saccharomyces cerevisiae. FEMS Microbiol Lett 130:307–312

    Article  PubMed  CAS  Google Scholar 

  • Abe F, Horikoshi K (1997) Vacuolar acidification in Saccharomyces cerevisiae induced by elevated hydrostatic pressure is transient and is mediated by vacuolar H+-ATPase. Extremophiles 1:89–93

    Article  PubMed  CAS  Google Scholar 

  • Abe F, Horikoshi K (1998) Analysis of intracellular pH in the yeast Saccharomyces cerevisiae under elevated hydrostatic pressure: a study in baro- (piezo-) physiology. Extremophiles 2:223–228

    Article  PubMed  CAS  Google Scholar 

  • Bale S, Goodman K, Rochelle P, Marchesi J, Fry J, Weightman A, Parkes R (1997) Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol 47:515–521

    Article  PubMed  CAS  Google Scholar 

  • Blanco M, Peinado AC, Mas J (2004) Analytical monitoring of alcoholic fermentation using NIR spectroscopy. Biotechnol Bioeng 88:536–542

    Article  PubMed  CAS  Google Scholar 

  • Daniel I, Oger PM, Picard A, Cardon H, Chervin J-C (2006) A diamond anvil cell adapted for low-pressure high-resolution investigations. Rev Sci Instr (in press)

  • DeLong E, Yayanos A (1987) Properties of the glucose transport system in some deep-sea bacteria. Appl Environ Microbiol 53:527–532

    PubMed  CAS  Google Scholar 

  • Fernandes PM (2005) How does yeast respond to pressure? Braz J Med Biol Res 38:1239–1245

    PubMed  CAS  Google Scholar 

  • Fernandes PM, Domitrovic T, Kao CM, Kurtenbach E (2004) Genomic expression pattern in Saccharomyces cerevisiae cells in response to high hydrostatic pressure. FEBS Lett 556:153–160

    Article  PubMed  CAS  Google Scholar 

  • Finn B, Harvey LM, McNeil B (2006) Near-infrared spectroscopic monitoring of biomass, glucose, ethanol and protein content in a high cell density baker’s yeast fed-batch bioprocess. Yeast 23:507–517

    Article  PubMed  CAS  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274:546–567

    Article  PubMed  CAS  Google Scholar 

  • Hofmann E, Kopperschlager G (1982) Phosphofructokinase from yeast. Meth Enzymol 90:49–60

    Article  PubMed  CAS  Google Scholar 

  • Iwahashi H, Kaul SC, Obuchi K, Komatsu Y (1991) Induction of barotolerance by heat shock treatment in yeast. FEMS Microbiol Lett 64:325–328

    Article  PubMed  CAS  Google Scholar 

  • Iwahashi H, Shimizu H, Odani M, Komatsu Y (2003) Piezophysiology of genome wide gene expression levels in the yeast Saccharomyces cerevisiae. Extremophiles 7:291–298

    Article  PubMed  CAS  Google Scholar 

  • Iwahashi H, Odani M, Ishidou E, Kitagawa E (2005) Adaptation of Saccharomyces cerevisiae to high hydrostatic pressure causing growth inhibition. FEBS Lett 579:2847–2852

    Article  PubMed  CAS  Google Scholar 

  • Kallmeyer J, Boetius A (2004) Effects of temperature and pressure on sulfate reduction and anaerobic oxidation of methane in hydrothermal sediments of guaymas basin. Appl Environ Microbiol 70:1231–1233

    Article  PubMed  CAS  Google Scholar 

  • Kallmeyer J, Ferdelman TG, Jansen KH, Jorgensen BB (2003) A high-pressure thermal gradient block for investigating microbial activity in multiple deep-sea samples. J Microbiol Meth 55:165–172

    Article  CAS  Google Scholar 

  • Kobori H, Sato M, Tameike A, Hamada K, Shimada S, Osumi M (1995) Ultrastructural effects of pressure stress to the nucleus in Saccharomyces cerevisiae: a study by immunoelectron microscopy using frozen thin sections. FEMS Microbiol Lett 132:253–258

    Article  PubMed  CAS  Google Scholar 

  • Malone AS, Wick C, Shellhammer TH, Courtney PD (2003) High pressure effects on proteolytic and glycolytic enzymes involved in cheese manufacturing. J Dairy Sci 86:1139–1146

    Article  PubMed  CAS  Google Scholar 

  • Michels P, Clark DS (1997) Pressure-enhanced activity and stability of a hyperthermophilic protease from a deep-sea methanogen. Appl Environ Microbiol 63:3985–3991

    PubMed  CAS  Google Scholar 

  • Miller JF, Shah NN, Nelson CM, Ludlow JM, Clark DS (1988) Pressure and temperature effects on growth and methane production of the extreme thermophile Methanococcus jannaschii. Appl Environ Microbiol 54:3039–3042

    PubMed  CAS  Google Scholar 

  • Mozhaev V, Lange R, Kudryashova E, Balny C (1996) Application of high hydrostatic pressure for increasing activity and stability of enzymes. Biotechnol Bioeng 52:320–331

    Article  CAS  PubMed  Google Scholar 

  • Oger PM, Daniel I, Picard A (2006) Development of a low-pressure diamond anvil cell and analytical tools to monitor microbial activities in situ under controlled P and T. Biochim Biophys Acta 1764:434–442

    PubMed  CAS  Google Scholar 

  • Parkes RJ, Cragg BA, Bale SJ, Goodman K, Fry JC (1995) A combined ecological and physiological approach to studying sulphate reduction within deep marine sediment layers. J Microbiol Meth 23:235–249

    Article  CAS  Google Scholar 

  • Picard A, Oger PM, Daniel I, Cardon H, Montagnac G, Chervin J-C (2006) A sensitive pressure sensor for diamond anvil cell experiments up to 2 GPa: FluoSpheres®. J Appl Phys 100 (in press)

  • Shanmuganathan A, Avery SV, Willetts SA, Houghton JE (2004) Copper-induced oxidative stress in Saccharomyces cerevisiae targets enzymes of the glycolytic pathway. FEBS Lett 556:253–259

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Hervé Cardon and Jean-Claude Chervin for technical assistance in the diamond-anvil cell technology, and the two anonymous reviewers for their helpful comments. This work was supported by grants from the CNRS MRCT and from the CNRS interdisciplinary French program Geomex.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Picard.

Additional information

Communicated by K. Horikoshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picard, A., Daniel, I., Montagnac, G. et al. In situ monitoring by quantitative Raman spectroscopy of alcoholic fermentation by Saccharomyces cerevisiae under high pressure. Extremophiles 11, 445–452 (2007). https://doi.org/10.1007/s00792-006-0054-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-006-0054-x

Keywords

Navigation