Skip to main content
Log in

Why is the molybdenum-substituted tungsten-dependent formaldehyde ferredoxin oxidoreductase not active? A quantum chemical study

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Formaldehyde ferredoxin oxidoreductase is a tungsten-dependent enzyme that catalyzes the oxidative degradation of formaldehyde to formic acid. The molybdenum ion can be incorporated into the active site to displace the tungsten ion, but is without activity. Density functional calculations have been employed to understand the incapacitation of the enzyme caused by molybdenum substitution. The calculations show that the enzyme with molybdenum (Mo-FOR) has higher redox potential than that with tungsten, which makes the formation of the MoVI=O complex endothermic by 14 kcal/mol. Following our previously suggested mechanism for this enzyme, the formaldehyde substrate oxidation was also investigated for Mo-FOR using the same quantum-mechanics-only model, except for the displacement of tungsten by molybdenum. The calculations demonstrate that formaldehyde oxidation occurs via a sequential two-step mechanism. Similarly to the tungsten-catalyzed reaction, the MoVI=O species performs the nucleophilic attack on the formaldehyde carbon, followed by proton transfer in concert with two-electron reduction of the metal center. The first step is rate-limiting, with a total barrier of 28.2 kcal/mol. The higher barrier is mainly due to the large energy penalty for the formation of the MoVI=O species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hille R (1996) Chem Rev 96:2757–2816

    Article  PubMed  CAS  Google Scholar 

  2. Johnson MK, Rees DC, Adams MWW (1996) Chem Rev 96:2817–2839

    Article  PubMed  CAS  Google Scholar 

  3. Enemark JH, Cooney JJA (2004) Chem Rev 104:1175–1200

    Article  PubMed  CAS  Google Scholar 

  4. Sugimoto H, Tsukube H (2008) Chem Soc Rev 37:2609–2619

    Article  PubMed  CAS  Google Scholar 

  5. Bevers LE, Hagedoorn PL, Hagen WR (2009) Coord Chem Rev 253:269–290

    Article  CAS  Google Scholar 

  6. Romão MJ (2009) Dalton Trans 4053–4068

  7. Stewart LJ, Bailey S, Bennett B, Charnock JM, Garner CD, McAlpine AS (2000) J Mol Biol 299:593–600

    Article  PubMed  CAS  Google Scholar 

  8. Buc J, Santini CL, Giordani R, Czjzek M, Wu LF, Giordano G (1999) Mol Microbiol 32:159–168

    Article  PubMed  CAS  Google Scholar 

  9. Bertram PA, Schmitz RA, Linder D, Thauer RK (1994) Arch Microbial 161:220–228

    Article  CAS  Google Scholar 

  10. Bertram PA, Karrasch M, Schmitz RA, Böcher R, Albracht SPJ, Thauer RK (1994) Eur J Biochem 220:477–484

    Article  PubMed  CAS  Google Scholar 

  11. Vorholt JA, Vaupel M, Thauer RK (1997) Mol Microbiol 23:1033–1042

    Article  PubMed  CAS  Google Scholar 

  12. Boll M, Schink B, Messerschmidt A, Kroneck PMH (2005) Biol Chem 386:999–1006

    PubMed  CAS  Google Scholar 

  13. Cohen HJ, Drew RT, Johnson JL, Rajagopalan KV (1973) Proc Natl Acad Sci USA 70:3655–3659

    Article  PubMed  CAS  Google Scholar 

  14. Sevcenco AM, Bevers LE, Pinkse MWH, Krijger GC, Wolterbeek HT, Verhaert PDEM, Hagen WR, Hagedoorn PL (2010) J Bacteriol 192:4143–4152

    Article  PubMed  CAS  Google Scholar 

  15. Leopoldini M, Russo N, Toscano M, Dulak M, Wesolowski TA (2006) Chem Eur J 12:2532–2541

    Article  PubMed  CAS  Google Scholar 

  16. Leopoldini M, Chiodo SG, Toscano M, Russo N (2008) Chem Eur J 14:8647–8681

    Article  Google Scholar 

  17. Hofmann M (2008) Inorg Chem 47:5546–5548

    Article  PubMed  CAS  Google Scholar 

  18. Metz S, Thiel W (2009) J Am Chem Soc 131:14885–14902

    Article  PubMed  CAS  Google Scholar 

  19. Metz S, Wang D, Thiel W (2009) J Am Chem Soc 131:4628–4640

    Article  PubMed  CAS  Google Scholar 

  20. Vincent MA, Hillier IH, Periyasamy G, Burton NA (2010) Dalton Trans 39:3816–3822

    Google Scholar 

  21. Szaleniec M, Borowski T, Schühle K, Witko M, Heider J (2010) J Am Chem Soc 132:6014–6024

    Article  PubMed  CAS  Google Scholar 

  22. Liao RZ, Yu JG, Himo F (2010) Proc Natl Acad Sci USA 107:22523–22527

    Article  PubMed  CAS  Google Scholar 

  23. Liu YF, Liao RZ, Ding WJ, Yu JG, Liu RZ (2011) J Biol Inorg Chem 16:745–752

    Article  PubMed  CAS  Google Scholar 

  24. Liao RZ, Himo F (2011) ACS Catal 1:937–944

    Article  CAS  Google Scholar 

  25. Mota CS, Rivas MG, Brondino CD, Moura I, Moura JJG, González PJ, Cerqueira NMFSA (2011) J Biol Inorg Chem 16:1255–1268

    Article  PubMed  CAS  Google Scholar 

  26. Metz S, Thiel W (2011) Coord Chem Rev 255:1085–1103

    Article  CAS  Google Scholar 

  27. Tiberti M, Papaleo E, Russo N, De Gioia L, Zampella G (2012) Inorg Chem 51:8331–8339

    Article  PubMed  CAS  Google Scholar 

  28. Liao RZ, Yu JG, Himo F (2011) J Inorg Biochem 105:927–936

    Article  PubMed  CAS  Google Scholar 

  29. Chan MK, Mukund S, Kletzin A, Adams MWW, Rees DC (1995) Science 267:1463–1469

    Article  PubMed  CAS  Google Scholar 

  30. Hu Y, Faham S, Roy R, Adams MWW, Rees DC (1999) J Mol Biol 286:899–914

    Article  PubMed  CAS  Google Scholar 

  31. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  32. Hagedoorn PL, Chen T, Schröder I, Piersma SR, de Vries S, Hagen WR (2005) J Biol Inorg Chem 10:259–269

    Article  PubMed  CAS  Google Scholar 

  33. Bol E, Bevers LE, Hagedoorn PL, Hagen WR (2006) J Biol Inorg Chem 11:999–1006

    Article  PubMed  CAS  Google Scholar 

  34. Romão MJ, Archer M, Moura I, Moura JJG, LeGall J, Engh R, Schneider M, Hof P, Huber R (1995) Science 270:1170–1176

    Article  PubMed  Google Scholar 

  35. Frisch MJ et al (2009) Gaussian 09, revision B.01, Gaussian, Wallingford

  36. Roy LE, Hay PJ, Martin RL (2008) J Chem Theory Comput 4:1029–1031

    Article  CAS  Google Scholar 

  37. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  PubMed  CAS  Google Scholar 

  38. Lonsdale R, Harvey JN, Mulholland AJ (2010) J Phys Chem Lett 1:3232–3237

    Article  CAS  Google Scholar 

  39. Siegbahn PEM, Blomberg MRA, Chen SL (2010) J Chem Theory Comput 6:2040–2044

    Article  CAS  Google Scholar 

  40. Chen SL, Blomberg MRA, Siegbahn PEM (2011) J Phys Chem B 115:4066–4077

    Article  PubMed  CAS  Google Scholar 

  41. Santoro S, Liao RZ, Himo F (2011) J Org Chem 76:9246–9252

    Article  PubMed  CAS  Google Scholar 

  42. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  43. Cossi M, Gega N, Scalmani G, Barone V (2003) J Comput Chem 24:669–691

    Article  PubMed  CAS  Google Scholar 

  44. Sevastik R, Himo F (2007) Bioorg Chem 35:444–457

    Article  PubMed  CAS  Google Scholar 

  45. Hopmann KH, Himo F (2008) J Chem Theory Comput 4:1129–1137

    Article  CAS  Google Scholar 

  46. Georgieva P, Himo F (2010) J Comput Chem 31:1707–1714

    PubMed  CAS  Google Scholar 

  47. Liao RZ, Yu JG, Himo F (2011) J Chem Theory Comput 7:1494–1501

    Article  CAS  Google Scholar 

  48. Koehler BP, Mukund S, Conover RC, Dhawan IK, Roy R, Adams MWW, Johnson MK (1996) J Am Chem Soc 118:12391–12405

    Article  CAS  Google Scholar 

  49. Siegbahn PEM, Tye JW, Hall MB (2007) Chem Rev 107:4414–4435

    Article  PubMed  CAS  Google Scholar 

  50. Siegbahn PEM, Blomberg MRA (2010) Chem Rev 110:7040–7061

    Article  PubMed  CAS  Google Scholar 

  51. Soong SL, Chebolu V, Koch SA, O’Sullivan T, Millar M (1986) Inorg Chem 25:4067–4068

    Article  CAS  Google Scholar 

  52. Holm RH, Donahue JP (1993) Polyhedron 12:571–589

    Article  CAS  Google Scholar 

  53. Pyykkö P (1988) Chem Rev 88:563–594

    Article  Google Scholar 

  54. Waters T, Wang XB, Yang X, Zhang L, O’Hair RAJ, Wang LS, Wedd AG (2004) J Am Chem Soc 126:5119–5129

    Article  PubMed  CAS  Google Scholar 

  55. Tenderholt AL, Szilagyi RK, Holm RH, Hodgson KO, Hedman B, Solomon EI (2007) J Inorg Biochem 101:1594–1600

    Article  PubMed  CAS  Google Scholar 

  56. Kuiper DS, Douthwaite RE, Mayol AR, Wolczanski PT, Lobkovsky EB, Cundari TR, Lam OP, Meyer K (2008) Inorg Chem 47:7139–7153

    Article  PubMed  CAS  Google Scholar 

  57. Majumdar A, Sarkar S (2009) Inorg Chim Acta 362:3493–3501

    Article  CAS  Google Scholar 

  58. Tucci GC, Donahue JP, Holm RH (1998) Inorg Chem 37:1602–1608

    Article  CAS  Google Scholar 

  59. Ueyama N, Oku H, Nakamura A (1992) J Am Chem Soc 114:7310–7311

    Article  CAS  Google Scholar 

  60. Lim BS, Sung KM, Holm RH (2000) J Am Chem Soc 122:7410–7411

    Article  CAS  Google Scholar 

  61. Sung KM, Holm RH (2001) J Am Chem Soc 123:1931–1943

    Article  PubMed  CAS  Google Scholar 

  62. Lim BS, Holm RH (2001) J Am Chem Soc 123:1920–1930

    Article  PubMed  CAS  Google Scholar 

  63. Tenderholt AL, Hodgson KO, Hedman B, Holm RH, Solomon EI (2012) Inorg Chem 51:3436–3442

    Article  PubMed  CAS  Google Scholar 

  64. McNamara JP, Hillier IH, Bhachu TS, Garner CD (2005) Dalton Trans 3572–3579

  65. Lee SC, Holm RH (2008) Inorg Chim Acta 361:1166–1176

    Article  CAS  Google Scholar 

  66. Hofmann M (2007) J Biol Inorg Chem 12:989–1001

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

R.-Z.L. acknowledges helpful discussions with Fahmi Himo at Stockholm University, careful revision of the manuscript by the editor, and a postdoctoral fellowship from the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-Zhen Liao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2012_961_MOESM1_ESM.pdf

Supplementary material 1. Supporting information available. Cartesian coordinates for all stationary points for formaldehyde oxidation by Mo-FOR. This material is available free of charge via the Internet. (PDF 339 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, RZ. Why is the molybdenum-substituted tungsten-dependent formaldehyde ferredoxin oxidoreductase not active? A quantum chemical study. J Biol Inorg Chem 18, 175–181 (2013). https://doi.org/10.1007/s00775-012-0961-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-012-0961-5

Keywords

Navigation