Skip to main content
Log in

Mechanistic insight into the initiation step of the reaction of Burkholderia pseudomallei catalase-peroxidase with peroxyacetic acid

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The reaction of the catalase-peroxidase of Burkholderia pseudomallei with peroxyacetic acid has been analyzed using stopped-flow spectrophotometry. Two well-defined species were observed, the first defined by an increase in intensity and narrowing of the Soret band at 407 nm and a 10-nm shift of the charge transfer band from 635 to 625 nm. These features are consistent with a ferric spectrum with a greater proportion of sixth-coordination character and are assigned to an FeIII–peroxyacetic acid complex. Complementary 9-GHz EPR characterization of the changes in the ferric signal of the resting enzyme induced by the binding of acetate in the heme pocket substantiates the proposal. Kinetic analysis of the spectral changes as a function of peroxyacetic acid concentration revealed two independent peroxyacetic acid binding events, one coincident with formation of the FeIII–peroxyacetic acid complex and the other coincident with the heme oxidation to the subsequent ferryl intermediate. A model to explain the need for two peroxyacetic acid binding events is proposed. The reaction of the W330F variant followed similar kinetics, although the characteristic spectral features of the FeIV=O Por•+ species were detected. The variant D141A lacking an aspartate at the entrance to the heme cavity as well as the R108A and D141A/R108A variants showed no evidence for the FeIII–peroxyacetic acid complex, only the formation of ferryl species with absorbance maxima at 414, 545, and 585 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Singh R, Wiseman B, Deemagarn T, Donald LJ, Duckworth HW, Carpena X, Fita I, Loewen PC (2004) J Biol Chem 279:43098–43106

    Article  PubMed  CAS  Google Scholar 

  2. Singh R, Wiseman B, Deemagarn T, Jha V, Switala J, Loewen PC (2008) Arch Biochem Biophys 417:207–214

    Article  Google Scholar 

  3. Claiborne A, Fridovich I (1979) J Biol Chem 254:4245–4252

    PubMed  CAS  Google Scholar 

  4. Loewen PC, Triggs BL, George CS, Hrabarchuk BE (1985) J Bacteriol 162:661–667

    PubMed  CAS  Google Scholar 

  5. Triggs-Raine BL, Doble BL, Mulvey MR, Sorby PA, Loewen PC (1988) J Bacteriol 170:4415–4419

    PubMed  CAS  Google Scholar 

  6. Zhang Y, Heym B, Allen B, Young D, Cole S (1992) Nature 358:591–593

    Article  PubMed  CAS  Google Scholar 

  7. Sivaraja M, Goodin DB, Smith M, Hoffman B (1989) Science 245:738–740

    Article  PubMed  CAS  Google Scholar 

  8. Blodig W, Smith AT, Winterhalter K, Piontek K (1999) Arch Biochem Biophys 370:86–92

    Article  PubMed  CAS  Google Scholar 

  9. Singh R, Switala J, Loewen PC, Ivancich A (2007) J Am Chem Soc 129:15954–15963

    Article  PubMed  CAS  Google Scholar 

  10. Chouchane S, Lippai I, Magliozzo RS (2000) Biochemistry 39:9975–9983

    Article  PubMed  CAS  Google Scholar 

  11. Jakopitsch C, Auer M, Regelsberger G, Jantschko W, Furtmuller PG, Ruker F, Obinger C (2003) Biochemistry 42:5292–5300

    Article  PubMed  CAS  Google Scholar 

  12. Jakopitsch C, Ivancich A, Schmuckenschlager F, Wanasinghe A, Potl G, Furtmuller PG, Ruker F, Obinger C (2004) J Biol Chem 279:46082–46095

    Article  PubMed  CAS  Google Scholar 

  13. Jakopitsch C, Auer M, Regelsberger G, Jantschko W, Furtmuller PG, Ruker F, Obinger C (2003) Eur J Biochem 270:1006–1013

    Article  PubMed  CAS  Google Scholar 

  14. Jakopitsch C, Auer M, Ivancich A, Ruker F, Furtmuller PG, Obinger C (2003) J Biol Chem 278:20185–20191

    Article  PubMed  CAS  Google Scholar 

  15. Regelsberger G, Jakopitsch D, Ruker F, Krois D, Peschek GA, Obinger C (2000) J Biol Chem 275:22854–22861

    Article  PubMed  CAS  Google Scholar 

  16. Jakopitsch C, Vlasits J, Wiseman B, Loewen PC, Obinger C (2007) Biochemistry 46:1183–1193

    Article  PubMed  CAS  Google Scholar 

  17. Ghiladi RA, Knudsen GM, Medzihradszky KF, Ortiz de Montellano PR (2005) J Biol Chem 280:22651–22663

    Article  PubMed  CAS  Google Scholar 

  18. Spotilak T, Dawson JH, Ballou DP (2005) J Biol Chem 280:20300–20309

    Article  Google Scholar 

  19. Carpena X, Switala J, Loprasert S, Mongkolsuk S, Fita I, Loewen PC (2002) Acta Crystallogr D 58:2184–2186

    Article  PubMed  Google Scholar 

  20. Rørth M, Jensen PK (1967) Biochim Biophys Acta 139:171–173

    PubMed  Google Scholar 

  21. Childs RE, Bardsley WG (1975) Biochem J 145:93–103

    PubMed  CAS  Google Scholar 

  22. Layne E (1957) Methods Enzymol 3:447–454

    Article  Google Scholar 

  23. Carpena X, Wiseman B, Deemagarn T, Herguedas B, Ivancich A, Singh R, Loewen PC, Fita I (2006) Biochemistry 45:5171–5179

    Article  PubMed  CAS  Google Scholar 

  24. Emsley P, Cowtan K (2004) Acta Crystallogr D 60:2126–2132

    Article  PubMed  Google Scholar 

  25. Deemagarn T, Wiseman B, Carpena X, Ivancich A, Fita I, Loewen PC (2007) Proteins 66:219–228

    Article  PubMed  CAS  Google Scholar 

  26. Schonbaum GR (1973) J Biol Chem 248:502–511

    PubMed  CAS  Google Scholar 

  27. Henriksen A, Schuller DJ, Meno K, Welinder KG, Smith AT, Gajhede M (1998) Biochemisty 37:8054–8060

    Article  CAS  Google Scholar 

  28. Loewen PC, Carpena X, Rovira C, Haas R, Odenbreit S, Nicholls P, Fita I (2004) Biochemistry 43:3089–3103

    Article  PubMed  CAS  Google Scholar 

  29. Dunford HB (1999) Heme peroxidases. Wiley, New York

    Google Scholar 

  30. Fielding AJ, Singh R, Boscolo B, Loewen PC, Ghibaudi EI, Ivancich A (2008) Biochemistry 47:9781–9792

    Article  PubMed  CAS  Google Scholar 

  31. Ivancich A, Jakopitsch C, Auer M, Un S, Obinger C (2003) J Am Chem Soc 125:14093–14102

    Article  PubMed  CAS  Google Scholar 

  32. Erman JE, Vitello LB, Mauro JM, Kraut J (1989) Biochemistry 28:7992–7995

    Article  PubMed  CAS  Google Scholar 

  33. Rodriguez-Lopez JN, Smith AT, Thorneley RNF (1996) J Biol Chem 271:4023–4030

    Article  PubMed  CAS  Google Scholar 

  34. Loew G, Dupuis M (1996) J Am Chem Soc 118:10584–10587

    Article  CAS  Google Scholar 

  35. Derat E, Shaik S, Rovira C, Vidossich P, Alfonso-Prieto M (2007) J Am Chem Soc 129:6346–6347

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the French CNRS and CEA Saclay (to A.I.), a Ph.D. Fellowship (CFR contract from CEA Saclay to J.C.), and grants from the Natural Sciences and Engineering Research Council of Canada (to P.C.L.) and the Canadian Research Chair Program (to P.C.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anabella Ivancich or Peter C. Loewen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 98 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiseman, B., Colin, J., Smith, A.T. et al. Mechanistic insight into the initiation step of the reaction of Burkholderia pseudomallei catalase-peroxidase with peroxyacetic acid. J Biol Inorg Chem 14, 801–811 (2009). https://doi.org/10.1007/s00775-009-0493-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-009-0493-9

Keywords

Navigation