Skip to main content

Advertisement

Log in

Inhibition of cathepsin B by Au(I) complexes: a kinetic and computational study

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Gold(I) compounds have been used in the treatment of rheumatoid arthritis for over 80 years, but the biological targets and the structure–activity relationships of these drugs are not well understood. Of particular interest is the molecular mechanism behind the antiarthritic activity of the orally available drug triethylphosphine(2,3,4,6-tetra-O-acetyl-β-1-d-thiopyranosato-S) gold(I) (auranofin, Ridaura). The cathepsin family of lysosomal, cysteine-dependent enzymes is an attractive biological target of Au(I) and is inhibited by auranofin and auranofin analogs with reasonable potency. Here we employ a combination of experimental and computational investigations into the effect of changes in the phosphine ligand of auranofin on its in vitro inhibition of cathepsin B. Sequential replacement of the ethyl substituents of triethylphosphine by phenyl groups leads to increasing potency in the resultant Au(I) complexes, due in large part to favorable interactions of the more sterically bulky Au(I)–PR3 fragments with the enzyme active site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Koch R (1927) Dtsch Med Wochenschr 16

  2. Forestier J (1935) J Lab Clin Med 20:827

    Google Scholar 

  3. Empire Rheumatism Council (1961) Ann Rheum Dis 20:315

    Article  Google Scholar 

  4. Yelin E, Wanke LA (1999) Arthritis Rheum 42:1209

    Article  PubMed  CAS  Google Scholar 

  5. Wolfe F (1996) J Rheumatol Suppl 44:13

    PubMed  CAS  Google Scholar 

  6. Baker DG, Rabinowitz JL (1986) J Clin Pharmacol 26:2

    PubMed  CAS  Google Scholar 

  7. Weidauer E, Yasuda Y, Biswal BK, Cherny M, James MNG, Brömme D (2007) Biol Chem 388:331

    Article  PubMed  CAS  Google Scholar 

  8. Fricker SP (1996) Gold Bull 29:53

    CAS  Google Scholar 

  9. Shaw CF III (1999) Chem Rev 99:2589

    Article  CAS  Google Scholar 

  10. Rohozková D, Steven FS (1983) Br J Pharmacol 79:181

    PubMed  Google Scholar 

  11. Paltemaa S (1968) Acta Rheum Scand 14:161

    PubMed  CAS  Google Scholar 

  12. Urig S, Fritz-Wolf K, Réau R, Herold-Mende C, Tóth K, Davioud-Charvet E, Becker K (2006) Angew Chem Int Ed Engl 45:1881

    Article  PubMed  CAS  Google Scholar 

  13. Rigobello MP, Messori L, Marcon G, Agostina Cinellu M, Bragadin M, Folda A, Scutari G, Bindoli A (2004) J Inorg Biochem 98:1634

    Article  CAS  Google Scholar 

  14. Erdogan E, Lamark T, Stallings-Mann M, Jamieson L, Pellecchia M, Thompson EA, Johansen T, Fields AP (2006) J Biol Chem 281:28450

    Article  PubMed  CAS  Google Scholar 

  15. Wang Q, Janzen N, Ramachandran C, Jirik F (1997) Biochem Pharmacol 54:703

    Article  PubMed  CAS  Google Scholar 

  16. Snyder RM, Mirabelli CK, Crooke ST (1987) Semin Arthritis Rheum 17:71

    Article  PubMed  CAS  Google Scholar 

  17. Honey K, Rudensky AY (2003) Nat Rev Immunol 3:472

    Article  PubMed  CAS  Google Scholar 

  18. Gunatilleke SS, Barrios AM (2006) J Med Chem 49:3933

    Article  PubMed  CAS  Google Scholar 

  19. Barrett AJ (1980) Biochem J 187:909

    PubMed  CAS  Google Scholar 

  20. Chircorian A, Barrios AM (2004) Bioorg Med Chem Lett 14:5113

    Article  PubMed  CAS  Google Scholar 

  21. Feild MJ, Bash PA, Karplus M (1990) J Comput Chem 11:700

    Article  Google Scholar 

  22. Singh UC, Kollman PA (1986) J Comput Chem 7:718

    Article  CAS  Google Scholar 

  23. Warshel A, Levitt M (1976) J Mol Biol 103:227

    Article  PubMed  CAS  Google Scholar 

  24. Jorgensen WL, Tubert-Brohman I, Guimarães CRW (2004) Abstr Pap Am Chem Soc 227:U902

    Google Scholar 

  25. Tubert-Brohman I, Guimarães CRW, Jorgensen WL (2005) J Chem Theory Comput 1:817

    Article  CAS  PubMed  Google Scholar 

  26. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179

    Article  CAS  Google Scholar 

  27. Case DA, Perlman DA, Caldwell JW, Chetham TE III, Ross WS, Simmerling CL, Darden TA, Merz KM, Stanton RV, Cheng AL, Vincent JJ, Crowley M, Tsui V, Gohlke H, Radmer RJ, Duan Y, Pitera J, Massova I, Seibel GL, Singh UC, Weiner PK, Kollman PA (2002) AMBER. University of California, San Francisco

  28. Hockney RW (1968) Bull Am Phys Soc 13:1747

    Google Scholar 

  29. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684

    Article  CAS  Google Scholar 

  30. Musil D, Zucic D, Turk D, Engh RA, Mayr I, Huber R, Popovic T, Turk V, Towatari T, Katunuma N, Bode W (1991) EMBO J 10:2321

    PubMed  CAS  Google Scholar 

  31. Choe Y, Leonetti F, Greenbaum DC, Lecaille F, Bogyo M, Brömme D, Ellman JA, Craik CS (2006) J Biol Chem 281:12824

    Article  PubMed  CAS  Google Scholar 

  32. LaLonde JM, Zhao B, Smith WW, Janson CA, DesJarlais RL, Tomaszek TA, Carr TJ, Thompson SK, Oh H-J, Yamashita DS, Veber DF, Abdel-Meguid SS (1998) J Med Chem 41:4567

    Article  PubMed  CAS  Google Scholar 

  33. McGrath ME (1999) Annu Rev Biophys Biomol Struct 28:181

    Article  PubMed  CAS  Google Scholar 

  34. Turk V, Turk B, Turk D (2001) EMBO J 20:4629

    Article  PubMed  CAS  Google Scholar 

  35. Tolman CA (1977) Chem Rev 77(3):313

    Article  CAS  Google Scholar 

  36. Sutton BM, McGusty E, Walz DT, DiMartino MJ (1972) J Med Chem 15(11):1095

    Article  PubMed  CAS  Google Scholar 

  37. Whitehouse MW, Cookson PD, Siasios G, Tiekink ERT (1998) Met Based Drugs 5(4):245

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

A.M.B. and S.S.G. acknowledge the College of Letters, Arts and Sciences and the WiSE program at the University of Southern California for generous support. The work done by C.A.F.O. and J.A.M. was supported in part by grants from NSF, NIH, the Center for Theoretical Biological Physics, the National Biomedical Computation Resource, San Diego Supercomputing Center and Accelrys Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy M. Barrios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunatilleke, S.S., de Oliveira, C.A.F., McCammon, J.A. et al. Inhibition of cathepsin B by Au(I) complexes: a kinetic and computational study. J Biol Inorg Chem 13, 555–561 (2008). https://doi.org/10.1007/s00775-008-0344-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0344-0

Keywords

Navigation