Skip to main content
Log in

Transition metal spin state energetics and noninnocent systems: challenges for DFT in the bioinorganic arena

  • Commentary
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Although density functional theory (DFT) provides a generally good description of transition metal systems, we have identified several cases, involving Fe(III) porphyrins and related systems, where common functionals fail to correctly describe the energetics of the different low-lying spin states. The question of metal- versus ligand-centered oxidation in high-valent transition metal complexes is also a challenging one for DFT calculations, as I have tried to illustrate with examples from among porphyrin, corrole, biliverdine, and NO complexes. In a number of cases, I have compared results obtained with different exchange–correlation functionals; in addition, I have added a discussion on the relative performance of pure versus hybrid functionals. Finally, I have offered some thoughts on the role that traditional wavefunction-based ab initio methods, now essentially absent from the bioinorganic arena, might play in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Noodleman L, Lovell T, Han WG, Li J, Himo F (2004) Chem Rev 104:459–508

    Article  PubMed  CAS  Google Scholar 

  2. Friesner RA, Guallar V (2005) Ann Rev Phys Chem 56:389–427

    Article  CAS  Google Scholar 

  3. Shaik S, de Visser SP (2005) In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Kluwer/Plenum, New York, pp 45–85

  4. Bassan A, Blomberg MRA, Borowski T, Siegbahn PEM (2006) J Inorg Biochem 100:727–743

    Article  PubMed  CAS  Google Scholar 

  5. Ghosh A, Taylor PR (2003) Curr Opin Chem Biol 7:113–124

    Article  PubMed  CAS  Google Scholar 

  6. Ghosh A, Steene E (2001) J Biol Inorg Chem 6:739–752

    Article  PubMed  CAS  Google Scholar 

  7. Ghosh A, Vangberg T, Gonzalez E, Taylor P (2001) J Porphyrins Phthalocyanines 5:345–356

    Article  CAS  Google Scholar 

  8. Ghosh A, Persson BJ, Taylor PR (2003) J Biol Inorg Chem 8:507–511

    PubMed  CAS  Google Scholar 

  9. Ghosh A, Taylor PR (2005) J Chem Theory Comput 1:597–600

    Article  CAS  Google Scholar 

  10. Roos B (1999) Acc Chem Res 32:137–144

    Article  CAS  Google Scholar 

  11. Ghosh A (2006) J Inorg Biochem 100:419–420

    Article  PubMed  CAS  Google Scholar 

  12. Ghosh A, Almlöf J, Que L (1994) J Phys Chem A 98:5576–5579

    Article  CAS  Google Scholar 

  13. Ghosh A, Almlöf J, Que L (1996) Angew Chem Int Ed Engl 35:770–772

    Article  CAS  Google Scholar 

  14. Becke AD (2003) J Chem Phys 119:2972–2977

    Article  CAS  Google Scholar 

  15. Green MT (2001) J Am Chem Soc 123:9218–9219

    Article  PubMed  CAS  Google Scholar 

  16. Derat E, Shaik S (2006) J Am Chem Soc 128 (in press). DOI 10.1021/ja0600734

  17. Green MT, Dawson JH, Gray HB (2004) Science 304:1653–1656

    Article  PubMed  CAS  Google Scholar 

  18. Stone KL, Hoffart LM, Behan RK, Krebs C, Green MT (2006) J Am Chem Soc 128:5100, 6147–6153

    Google Scholar 

  19. Horner O, Oddou J-L, Mouesca J-M, Houve JM (2006) J Inorg Biochem 100:477–479

    Article  PubMed  CAS  Google Scholar 

  20. Groves JT (2006) J Inorg Biochem 100:434–447

    Article  PubMed  CAS  Google Scholar 

  21. Conradie J, Wasbotten I, Ghosh A (2006) J Inorg Biochem 100:502–506

    Article  PubMed  CAS  Google Scholar 

  22. Ghosh A, Tangen E, Ryeng H, Taylor PR (2004) Eur J Inorg Chem 4555–4560

  23. Decker A, Clay MD, Solomon EI (2006) J Inorg Biochem 100:697–706

    Article  PubMed  CAS  Google Scholar 

  24. Conradie MM, Conradie J, Ghosh A (2006) J Inorg Biochem 100:707–715

    Article  PubMed  CAS  Google Scholar 

  25. Chanda A, Popescu D-L, Tiago de Oliveira F, Bominaar EL, Ryabov AD, Münck E, Collins TJ (2006) J Inorg Biochem 100:606–619

    Article  PubMed  CAS  Google Scholar 

  26. Conradie MM, Conradie J, Ghosh A (2006) J Inorg Biochem 100:620–626

    Article  PubMed  CAS  Google Scholar 

  27. Ghosh A, Wondimagegn T, Parusel ABJ (2000) J Am Chem Soc 122:5100–5104

    Article  CAS  Google Scholar 

  28. Steene E, Dey A, Ghosh A (2003) J Am Chem Soc 125:16300–16309

    Article  PubMed  CAS  Google Scholar 

  29. Fox JP, Ramdhanie B, Zareba AA, Czernuszewicz RS, Goldberg DP (2004) Inorg Chem 43:6600–6608

    Article  PubMed  CAS  Google Scholar 

  30. van Oort B, Tangen E, Ghosh A (2004) Eur J Inorg Chem 2442–2445

  31. Wasbotten I, Ghosh A (2006) Inorg Chem 45:4914–4921

    Article  PubMed  CAS  Google Scholar 

  32. Ghosh A, Wondimagegn T, Ryeng H (2001) Curr Opin Chem Biol 5:744–750

    Article  PubMed  CAS  Google Scholar 

  33. Wondimagegn T, Ghosh A (2001) J Am Chem Soc 123:1543–1544

    Article  PubMed  CAS  Google Scholar 

  34. Shima S, Thauer RK (2005) Curr Opin Microbiol 8:643–648

    Article  PubMed  CAS  Google Scholar 

  35. Pelmenschikov V, Blomberg MRA, Siegbahn PEM, Crabtree RH (2002) J Am Chem Soc 124:4039–4049

    Article  PubMed  CAS  Google Scholar 

  36. Jensen KP, Ryde U (2003) J Phys Chem A 107:7539–7545

    Article  CAS  Google Scholar 

  37. Hinderberger D, Piskorski RP, Goenrich M, Thauer RK, Schweiger A, Harmer J, Jaun B (2006) Angew Chem Int Ed Engl 45:3602–3607

    Article  PubMed  CAS  Google Scholar 

  38. Schultz NE, Zhao Y, Truhlar DG (2005) J Phys Chem A 109:11127–11143

    Article  PubMed  CAS  Google Scholar 

  39. Gill PMW (2001) Aust J Chem 54:661–662

    Article  CAS  Google Scholar 

  40. Ghosh A, Gonzalez E (2006) Isr J Chem 40:1–8

    Article  Google Scholar 

  41. De Angelis F, Jin N, Car R, Groves JT (2006) Inorg Chem 45:4268–4276

    Article  PubMed  CAS  Google Scholar 

  42. Handy NC, Cohen AJ (2001) Mol Phys 99:403–412

    Article  CAS  Google Scholar 

  43. Baerends EJ, Gritsenko OV (2005) J Chem Phys 123:062202

    Article  CAS  Google Scholar 

  44. Grabowski S, Hirata S, Ivanov S, Bartlett RJ (2002) J Chem Phys 116:4415–4425

    Article  CAS  Google Scholar 

  45. Grimme S (2006) J Chem Phys 124:034108

    Article  PubMed  CAS  Google Scholar 

  46. Friesner RA, Knoll EH, Cao Y (2006) J Chem Phys (in press)

  47. Cai S, Walker FA, Licoccia S (2000) Inorg Chem 39:3466–3478

    Article  PubMed  CAS  Google Scholar 

  48. Zakharieva O, Schunemann V, Gerdan M, Licoccia S, Cai S, Walker FA, Trautwein AX (2002) J Am Chem Soc 124:6636–6648

    Article  PubMed  CAS  Google Scholar 

  49. Walker FA, Licoccia S, Paolesse R (2006) J Inorg Biochem 100:810–837

    Article  PubMed  CAS  Google Scholar 

  50. Steene E, Wondimagegn T, Ghosh A (2001) J Phys Chem B 105:11406–11413. Addition/Correction: Steene E, Wondimagegn T, Ghosh A (2002) J Phys Chem B 106:5312–5312

    Google Scholar 

  51. Nardis S, Paolesse R, Licoccia S, Fronczek FR, Vicente MGH, Shokhireva TK, Cai S, Walker FA (2005) Inorg Chem 44:7030–7046

    Article  PubMed  CAS  Google Scholar 

  52. Vogel E, Will S, Tilling AS, Neumann L, Lex J, Bill E, Trautwein AX, Wieghardt K (1994) Angew Chem Int Ed Engl 33:731–735

    Article  Google Scholar 

  53. Gross Z, Gray HB (2006) Comments Inorg Chem 27:61–72

    Article  CAS  Google Scholar 

  54. Nguyen KT, Rath SP, Latos-Grazynski L, Olmstead MM, Balch AL (2004) J Am Chem Soc 126:6210–6211

    Article  PubMed  CAS  Google Scholar 

  55. Harischandra DN, Zhang R, Newcomb M (2005) J Am Chem Soc 127:13776–13777

    Article  PubMed  CAS  Google Scholar 

  56. Aliaga-Alcalde M, George SD, Mienert B, Bill E, Wieghardt K, Neese F (2005) Angew Chem Int Ed Engl 44:2908–2912

    Article  PubMed  CAS  Google Scholar 

  57. Newcomb M, Zhang R, Chandrasena REP, Halgrimson JA, Horner JH, Makris TM, Sligar SG (2006) J Am Chem Soc 128:4580–4581

    Article  PubMed  CAS  Google Scholar 

  58. Dey A, Ghosh A (2002) J Am Chem Soc 124:3206–3207

    Article  PubMed  CAS  Google Scholar 

  59. Berry JF, Bill E, Bothe E, George SD, Mienert B, Neese F, Wieghardt K (2006) Science (in press)

  60. Ghosh A (2005) Acc Chem Res 38:943–954

    Article  PubMed  CAS  Google Scholar 

  61. Franzen S (2002) Proc Natl Acad Sci USA 99:16754–16759

    Article  PubMed  CAS  Google Scholar 

  62. Praneeth VKK, Haupt E, Lehnert N (2005) J Inorg Biochem 99: 940–948. Correction: Praneeth VKK, Haupt E, Lehnert N (2005) J Inorg Biochem 99: 1744–1744

    Google Scholar 

  63. Scheidt WR, Duval HF, Neal TJ, Ellison MK (2000) J Am Chem Soc 122:4651–4659

    Article  CAS  Google Scholar 

  64. Ghosh A, Wondimagegn T (2000) J Am Chem Soc 122:8101–8102

    Article  CAS  Google Scholar 

  65. Westcott BL, Enemark JL (1999) In: Solomon EI, Lever ABP (eds) Inorganic electronic structure and spectroscopy, vol 2. Wiley, New York, pp 403–450

  66. Tangen E, Svadberg A, Ghosh A (2005) Inorg Chem 44:7802–7805

    Article  PubMed  CAS  Google Scholar 

  67. Serres RG, Grapperhaus CA, Bothe E, Bill E, Weyhermüller T, Neese F, Wieghardt K (2004) J Am Chem Soc 126:5138–5153

    Article  PubMed  CAS  Google Scholar 

  68. Zhang Y, Pavlosky MA, Brown CA, Westre TE, Hedman B, Hodgson KO, Solomon EI (1992) J Am Chem Soc 114:9189–9191

    Article  CAS  Google Scholar 

  69. Ray M, Golombek AP, Hendrich MP, Yap GPA, Liable-Sands LM, Rheingold AL, Borovik AS (1999) Inorg Chem 38:3110–3115

    Article  CAS  Google Scholar 

  70. Ray M, Golombek AP, Hendrich MP, Young VG, Borovik AS (1996) J Am Chem Soc 118:6084–6085

    Article  CAS  Google Scholar 

  71. Tangen E, Ghosh A (2005) J Inorg Biochem 99:959–962

    Article  PubMed  CAS  Google Scholar 

  72. Koch H, de Meras AS, Pedersen TB (2003) J Chem Phys 118:9481–9484

    Article  CAS  Google Scholar 

  73. Chong DP, Gritsenko OV, Baerends EJ (2002) J Chem Phys 116:1760–1772

    Article  CAS  Google Scholar 

  74. Bartlett RJ, Lotrich VF, Schweigert IV (2005) J Chem Phys 123:062205

    Article  CAS  Google Scholar 

  75. Baerends EJ, Gritsenko OV (1997) J Phys Chem A 101:5383–5403

    Article  CAS  Google Scholar 

  76. Gritsenko OV, Baerends EJ (2004) J Chem Phys 120:8364–8372

    Article  PubMed  CAS  Google Scholar 

  77. Hoffmann R (1998) J Mol Struct (THEOCHEM) 424:1–6

    Article  CAS  Google Scholar 

  78. Altun A, Guallar V, Friesner RA, Shaik S, Thiel W (2006) J Am Chem Soc 128:3924–3925

    Article  PubMed  CAS  Google Scholar 

  79. Conradie J, Ghosh A (2006) Inorg Chem 45:4902–4909

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Much of the newer work described herein was carried out by my coworkers Ingar Wasbotten, Jeanet Conradie, and Espen Tangen. In addition, I thank Peter Taylor, Björn Roos, Evert Jan Baerends, Per Siegbahn, Richard Friesner, Stephen Lippard and Thomas Pedersen for stimulating discussions. The Research Council of Norway is thanked for generous financial support for the last several years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhik Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, A. Transition metal spin state energetics and noninnocent systems: challenges for DFT in the bioinorganic arena. J Biol Inorg Chem 11, 712–724 (2006). https://doi.org/10.1007/s00775-006-0135-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0135-4

Navigation