Skip to main content
Log in

Bone tissue incorporates in vitro gallium with a local structure similar to gallium-doped brushite

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

During mineral growth in rat bone-marrow stromal cell cultures, gallium follows calcium pathways. The dominant phase of the cell culture mineral constitutes the poorly crystalline hydroxyapatite (HAP). This model system mimics bone mineralization in vivo. The structural characterization of the Ga environment was performed by X-ray absorption spectroscopy at the Ga K-edge. These data were compared with Ga-doped synthetic compounds (poorly crystalline hydroxyapatite, amorphous calcium phosphate and brushite) and with strontium-treated bone tissue, obtained from the same culture model. It was found that Sr2+ substitutes for Ca2+ in the HAP crystal lattice. In contrast, the replacement by Ga3+ yielded a much more disordered local environment of the probe atom in all investigated cell culture samples. The coordination of Ga ions in the cell culture minerals was similar to that of Ga3+, substituted for Ca2+, in the Ga-doped synthetic brushite (Ga-DCPD). The Ga atoms in the Ga-DCPD were coordinated by four oxygen atoms (1.90 Å) of the four phosphate groups and two oxygen atoms at 2.02 Å. Interestingly, the local environment of Ga in the cell culture minerals was not dependent on the onset of Ga treatment, the Ga concentration in the medium or the age of the mineral. Thus, it was concluded that Ga ions were incorporated into the precursor phase to the HAP mineral. Substitution for Ca2+ with Ga3+ distorted locally this brushite-like environment, which prevented the transformation of the initially deposited phase into the poorly crystalline HAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACP:

amorphous calcium phosphate

DCPD:

dicalcium phosphate dihydrate (brushite)

HAP:

hydroxyapatite

ED-XRF:

energy dispersive X-ray fluorescence

EXAFS:

extended X-ray absorption fine structure

Ga-ACP:

gallium-doped amorphous calcium phosphate

Ga-DCPD:

gallium-doped brushite

Ga-HAP:

gallium-doped hydroxyapatite

XANES:

X-ray absorption near edge structure

XAS:

X-ray absorption spectroscopy

XRD:

X-ray diffraction

References

  1. Collery P, Keppler B, Madoulet C, Desoize B (2002) Crit Rev Oncol Hematol 42:283–296

    Article  PubMed  Google Scholar 

  2. Hurtado J, Esbrit P (2002) Expert Opin Pharmacother 3:521–527

    CAS  PubMed  Google Scholar 

  3. Bernstein LR (1998) Pharmacol Rev 50:665–682

    CAS  PubMed  Google Scholar 

  4. Warrel RP Jr, Bockman RS, Coonley CJ, Isaacs M, Staszewski HJ (1984) J Clin Invest 73:1487–1490

    PubMed  Google Scholar 

  5. Bockman RS, Repo MA, Warrel RP Jr, Pounds JG, Schidlovsky G, Gordon BM, Jones KW (1990) Proc Natl Acad Sci USA 87:4149–4153

    CAS  PubMed  Google Scholar 

  6. Webster LK, Olver IN, Stokes KH, Sephton RG, Hillcoat BL, Bishop JF (2000) Cancer Chemother Pharmacol 45:55–58

    CAS  PubMed  Google Scholar 

  7. Hall TJ, Chambers TJ (1990) Bone Miner 8:211–216

    CAS  PubMed  Google Scholar 

  8. Blair HC, Teitelbaum SL, Tan HL, Schlesinger PH (1992) J Cell Biochem 48:401–410

    CAS  PubMed  Google Scholar 

  9. Gruber HE, Norton HJ, Singer FR (1999) Miner Electrolyte Metab 25:127–134

    Google Scholar 

  10. Bockman RS, Guidon PT Jr, Pan LC, Salvatori R, Kawaguchi A (1993) J Cell Biochem 52:396–403

    CAS  PubMed  Google Scholar 

  11. Jenis LG, Waud CE, Stein GS, Lian JB, Baran DT (1993) J Cell Biochem 52:330–336

    CAS  PubMed  Google Scholar 

  12. Blumenthal NC, Cosma V, Levine S (1989) Calcif Tissue Int 45:81–87

    CAS  PubMed  Google Scholar 

  13. Okamoto Y, Hidaka S (1994) J Biomed Mater Res 28:1403–1410

    CAS  PubMed  Google Scholar 

  14. Bockman RS, Boskey AL, Blumenthal NC, Alcock NW, Warrel RP Jr (1986) Calcif Tissue Int 39:376–381

    CAS  PubMed  Google Scholar 

  15. Satomura K, Nagayama M (1991) Acta Anat 142:97–104

    CAS  Google Scholar 

  16. Kondo H, Ohyama T, Ohya K, Kasugai S (1997) J Bone Miner Res 12:2089–2097

    CAS  PubMed  Google Scholar 

  17. Rokita E, Korbas M, Mutsaers PHA, Tatoń G, de Voigt MJA (2001) Nucl Instrum Methods B 181:529–532

    Article  CAS  Google Scholar 

  18. Korbas M, Rokita E, Rokita H, Wróbel A (2002) Trace Elem Elec 19:109–113

    CAS  Google Scholar 

  19. Yamamoto A, Honma R, Sumita M (1998) J Biomed Mater Res 39:331–340

    Article  CAS  PubMed  Google Scholar 

  20. Tung MS, Brown WE (1983) Calcif Tissue Int 35:783–790

    CAS  PubMed  Google Scholar 

  21. Jensen AT, Rathlev J (1953) Inorg Synth 4:19–21

    Google Scholar 

  22. Pettifer RF, Hermes C (1985) J Appl Crystallogr 18:404–412

    Article  CAS  Google Scholar 

  23. Nolting H-F, Hermes C (1992) EXPROG: EMBL EXAFS data analysis and evaluation program package for PC/AT. European Molecular Biology Laboratory, c/o DESY, Hamburg

  24. Binsted N (1998) Computer program for EXAFS data analysis. CCLRC Daresbury Laboratory, UK

  25. Gurman SJ, Binsted N, Ross I (1984) J Phys C 17:143–151

    CAS  Google Scholar 

  26. Rehr JJ, Albers RC (1990) Phys Rev B 41:8139–8149

    Article  Google Scholar 

  27. Barth U von, Hedin L (1972) J Phys C 5:1629–1642

    Article  Google Scholar 

  28. Hedin L, Lundqvist S (1969) In: Seitz F, Turnbull D, Ehrenreich H (eds) Solid state physics, vol. 23. Academic Press, New York, pp 2–181

  29. Binsted N, Strange RW, Hasnain SS (1992) Biochemistry 31:12117–12125

    CAS  PubMed  Google Scholar 

  30. Stern EA (1993) Phys Rev B 48:9825–9827

    Google Scholar 

  31. Nishi K, Shimizu K, Takamatsu M, Yoshida H, Satsuma A, Tanaka T, Yoshida S, Hattori T (1998) J Phys Chem B 102:10190–10195

    Article  CAS  Google Scholar 

  32. Curry NA, Jones DW (1971) J Chem Soc A 3725–3729

  33. Mooney-Slater RCL (1966) Acta Crystallogr 20:526–534

    Article  CAS  Google Scholar 

  34. Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C (2001) Bone 28:446–453

    Article  CAS  PubMed  Google Scholar 

  35. Kay MI, Young RA, Posner AS (1964) Nature 204:1050–1052

    CAS  PubMed  Google Scholar 

  36. Wu LNY, Genge BR, Dunkelberger DG, LeGeros RZ, Concannon B, Wuthier RE (1997) J Biol Chem 272:4404–4411

    CAS  PubMed  Google Scholar 

  37. Roberts JE, Bonar LC, Griffin RG, Glimcher MJ (1992) Calcif Tissue Int 50:42–48

    CAS  PubMed  Google Scholar 

  38. Bigi A, Foresti E, Gandolfi M, Gazzano M, Roveri N (1995) J Inorg Biochem 58:49–58

    Article  CAS  Google Scholar 

  39. Bigi A, Falini G, Foresti E, Gazzano M, Ripamonti A, Roveri N (1996) Acta Crystallogr Sect B 52:87–92

    Article  Google Scholar 

  40. Åhman J, Svensson G, Albertson J (1996) Acta Crystallogr Sect C 52:1336–1338

    Article  Google Scholar 

  41. Rokita E, Mutsaers PHA, Quaedackers JA, Tatoń G, de Voigt MJA (1998) Nucl Instrum Methods B 139:180–185

    Article  CAS  Google Scholar 

  42. Abbona F, Baronnet A (1996) J Cryst Growth 165:98–105

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.K. is grateful for the support of the European Community – Improving the Human Research Potential and Social-Economic Knowledge Base Programme, Marie Curie Training Sites, contract number HPMT-CT-20000-00174 and of the European Community – Access to Research Infrastructure Action of the Improving Human Potential Programme to the EMBL Hamburg Outstation, contract number HPRI-CT-1999-00017. The authors wish to gratefully acknowledge the kind assistance of Dr. Bernd Hasse during data collection at beamline G3 of HASYLAB/DESY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Korbas.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korbas, M., Rokita, E., Meyer-Klaucke, W. et al. Bone tissue incorporates in vitro gallium with a local structure similar to gallium-doped brushite. J Biol Inorg Chem 9, 67–76 (2004). https://doi.org/10.1007/s00775-003-0497-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-003-0497-9

Keywords

Navigation