Skip to main content
Log in

Resonance Raman spectroscopy of cytochrome c peroxidase variants that mimic manganese peroxidase

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Cytochrome c peroxidase (CcP) variants with an engineered Mn(II) binding site, including MnCcP [CcP(MI, G41E, V45E, H181D)], MnCcP(W191F), and MnCcP(W191F, W51F), that mimic manganese peroxidase (MnP), have been characterized by resonance Raman (RR) spectroscopy. Analysis of the Raman bands in the 200–700 cm−1 and 1300–1650 cm−1 regions indicates that both the coordination and spin state of the heme iron in the variants differ from that of CcP(MI), the recombinant yeast CcP containing additional Met-Ile residues at the N-terminus. At neutral pH the frequencies of the ν3 mode indicate that a pure five-coordinate heme iron exists in CcP(MI) whereas a six-coordinate low-spin iron is the dominant species in the CcP variants with the engineered Mn(II) binding site. The H181D mutation, which weakens the proximal linkage to the heme iron, may be responsible for these spectral and structural changes. Raman spectra of the variants CcP(MI, W191F) and CcP(MI, W191F, W51F) were also obtained to clarify the structural and functional roles of mutations at two tryptophan sites. The W51F mutation was found to disrupt H-bonding to the distal water molecules and the resulting variants tended to form transitional or mixed coordination states that possess spectral and structural features similar to that of MnP. Such structural features, with a loosened distal water, may facilitate the binding of H2O2 and increase the rate constant for compound I formation. This effect, in addition to the elimination of an H-bond to ferryl oxygen by the same mutation, accounts for the increased MnP specific activity of MnCcP(W191F, W51F).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Abbreviations

CcP:

cytochrome c peroxidase

CcP(MI):

recombinant yeast CcP containing Met-Ile at the N-terminus in addition to the normal wild-type CcP sequence

HRP:

horseradish peroxidase

MnCcP:

CcP(MI, G41E, V45E, H181D)

MnCcP(W191F):

CcP(MI, G41E, V45E, H181D, W191F)

MnCcP(W191F, W51F):

CcP(MI, G41E, V45E, H181D, W191F, W51F)

MnP:

manganese peroxidase

RR:

resonance Raman

WtCcP:

wild-type cytochrome c peroxidase

References

  1. Gold MH, Wariishi H, Valli K (1989) In: Whittaker JR, Sonnet PE (eds) Biocatalysis in agricultural biotechnology. American Chemical Society, Washington, pp 127–140

  2. Gold M, Alic M (1993) Microbiol Rev 57:605–622

    CAS  PubMed  Google Scholar 

  3. Bumpus JA, Aust SD (1987) Bioassays 6:166–170

    CAS  Google Scholar 

  4. Eaton DC (1985) Microb Technol 7:194–196

    CAS  Google Scholar 

  5. Paszczynski A, Crawford RL (1995) Biotechnol Prog 11:368–379

    CAS  Google Scholar 

  6. Sundaramoorthy M, Kishi K, Gold MH, Poulos TL (1994) J Biol Chem 269:32759–32767

    CAS  PubMed  Google Scholar 

  7. Kuan I-C, Johnson KA, Tien M (1993) J Biol Chem 268:20064–20070

    CAS  PubMed  Google Scholar 

  8. Sutherland GRJ, Zapanta LS, Tien M, Aust SD (1997) Biochemistry 36:3654–3662

    Article  CAS  PubMed  Google Scholar 

  9. Kusters-van Someren M, Kishi K, Lundell T, Gold MH (1995) Biochemistry 34:10620–10627

    PubMed  Google Scholar 

  10. Sundaramoorthy M, Kishi K, Gold MH, Poulos TL (1997) J Biol Chem 272:17574–17580

    Article  CAS  PubMed  Google Scholar 

  11. Wariishi H, Valli K, Gold MH (1992) J Biol Chem 267:23688–23695

    CAS  PubMed  Google Scholar 

  12. Kishi K, Kusters-van Someren M, Mayfield MB, Sun J, Loehr TM, Gold MH (1996) Biochemistry 35: 8986–8994

    Article  CAS  PubMed  Google Scholar 

  13. Whitwam RE, Brown KR, Musick M, Natan MJ, Tien M (1997) Biochemistry 36:9766–9773

    Article  CAS  PubMed  Google Scholar 

  14. Lu Y, Berry SM, Pfister TD (2001) Chem Rev 101:3047–3080

    Article  CAS  PubMed  Google Scholar 

  15. Yeung BK, Wang X, Sigman JA, Petillo PA, Lu Y (1997) Chem Biol 4:215–221

    CAS  PubMed  Google Scholar 

  16. Wilcox SK, Putman CD, Sastry M, Blankenship J, Chazin WJ, McRee DE, Goodin DB (1998) Biochemistry 37:16853–16862

    Article  CAS  PubMed  Google Scholar 

  17. English AM, Tsaprailis G (1995) Adv Inorg Chem 43:79–125

    CAS  Google Scholar 

  18. Bosshard HR, Anni H, Yonetani T (1991) In: Everse J, Grisham MB (eds) Peroxidases in chemistry and biology II. CRC Press, Boca Raton, FL, pp 51–84

  19. Erecinska M, Oshino N, Loh P, Brocklehurst E (1973) Biochim Biophys Acta 292:1–12

    Article  CAS  PubMed  Google Scholar 

  20. Edwards SL, Xuong NH, Hamlin RC, Kraut J (1987) Biochemistry 26:1503–1511

    CAS  PubMed  Google Scholar 

  21. Poulos TL, Fenna RE (1994) In: Sigel H, Sigel A (eds) Metal ions in biological systems, vol 30: metalloenzymes involving amino acid-residue and related radicals. Dekker, New York, pp 25–75

  22. Finzel BC, Poulos TL, Kraut J (1984) J Biol Chem 259:13027–13036

    CAS  PubMed  Google Scholar 

  23. Fishel LA, Villafranca JE, Mauro JM, Kraut J (1987) Biochemistry 26:351–360

    CAS  PubMed  Google Scholar 

  24. Choudhury K, Poulos TL (1994) J Biol Chem 269:20239–20249

    CAS  PubMed  Google Scholar 

  25. Goodin DB, Davison MG, Roe JA, Mauk AG, Smith M (1991) Biochemistry 30:4953–4962

    CAS  PubMed  Google Scholar 

  26. Wang X, Lu Y (1999) Biochemistry 38: 9146–9157

    Article  CAS  PubMed  Google Scholar 

  27. Gengenbach A, Syn S, Wang X, Lu Y (1999) Biochemistry 38:11425–11432

    Article  CAS  PubMed  Google Scholar 

  28. Wang J, Caughey WS, Rousseau DL (1996) In: Feelisch M, Stamler JS (eds) Methods in nitric oxide research. Wiley, New York, pp 427–454

  29. Tu AT (1982) Raman spectroscopy in biology: principles and applications. Wiley, New York, pp 331–337

    Google Scholar 

  30. Spiro TG, Smulevich G, Su C (1990) Biochemistry 29:4497–4508

    CAS  PubMed  Google Scholar 

  31. Sievers G, Osterlund K, Ligands A (1979) Biochim Biophys Acta 581:1–14

    Article  CAS  PubMed  Google Scholar 

  32. Ronnbeerg M, Osterlund K, Ellfolk N (1980) Biochim Biophys Acta 626:23–30

    PubMed  Google Scholar 

  33. Smulevich G, Wang Y, Edwards SL, Poulos TL, English AM, Spiro TG (1990) Biochemistry 29:2586–2592

    CAS  PubMed  Google Scholar 

  34. Reczek CM, Sitter AJ, Terner J (1989) J Mol Struct 214:27–41

    Article  CAS  Google Scholar 

  35. Smulevich G, Evangelista-Kirkup R, English A, Spiro TG (1986) Biochemistry 25:4426–4430

    CAS  PubMed  Google Scholar 

  36. Smulevich G, Mauro JM, Fishel LA, English AM, Kraut J, Spiro TG (1988) Biochemistry 27:5486–5492

    CAS  PubMed  Google Scholar 

  37. Smulevich G, Mauro JM, Fishel LA, English AM, Kraut J, Spiro TG (1988) Biochemistry 27:5477–5485

    CAS  PubMed  Google Scholar 

  38. Smulevich G, Mantini AM, English AM, Mauro JM (1989) Biochemistry 28:5058–5064

    CAS  PubMed  Google Scholar 

  39. Smulevich G, Wang Y, Mauro JM, Wang J, Fishel LA, Kraut J, Spiro TG (1990) Biochemistry 29:7174–7180

    CAS  PubMed  Google Scholar 

  40. Smulevich G, Miller MA, Kraut J, Spiro TG (1991) Biochemistry 30:9546–9558

    PubMed  Google Scholar 

  41. Dasgupta S, Rousseau DL, Anni H, Yonetani T (1989) J Biol Chem 264:654–662

    CAS  PubMed  Google Scholar 

  42. Vitello LB, Huang M, Erman JE (1990) Biochemistry 29:4283–4288

    CAS  PubMed  Google Scholar 

  43. Edwards SL, Poulos TL, Kraut J (1984) J Biol Chem 259:12984–12988

    CAS  PubMed  Google Scholar 

  44. Poulos TL, Freer ST, Alden RA, Xuong NH, Edwards SL, Hamlin RC, Kraut J (1978) J Biol Chem 253:3730–3735

    CAS  PubMed  Google Scholar 

  45. Wang J, Mauro M, Edwards SL, Oatley SJ, Fishel LA, Ashford VA, Xuong N, Kraut J (1990) Biochemistry 29:7160–7173

    CAS  PubMed  Google Scholar 

  46. Kuan I-C, Johnson KA, Tien M (1993) J Biol Chem 268:20064–20070

    CAS  PubMed  Google Scholar 

  47. Choi S, Spiro TG, Langry KC, Smith KM, Budd DL, La Mar GN (1982) J Am Chem Soc 104:4345–4351

    CAS  Google Scholar 

  48. Mino Y, Wariishi H, Blackburn NJ, Loehr TM, Gold MH (1988) J Biol Chem 263:7029–7036

    CAS  PubMed  Google Scholar 

  49. Teraoka J, Kitagawa T (1981) J Biol Chem 256:3969–3977

    CAS  PubMed  Google Scholar 

  50. Kishi K, Hildebrand DP, Kusters-van Someren M, Gettemy J, Mauk AG, Gold MH (1997) Biochemistry 36:4268–4277

    Article  CAS  PubMed  Google Scholar 

  51. Yongs HL, Moenne-Loccoz P, Loehr TM, Gold MH (2000) Biochemistry 39:9994–10000

    Google Scholar 

  52. Keilin D, Hartree EF (1951) Biochem J 49:88–97

    CAS  Google Scholar 

  53. Strittmatter P, Velick SF (1956) J Biol Chem 221:253–264

    CAS  Google Scholar 

  54. Fishel LA, Farnum MF, Mauro JM, Miller MA, Kraut J, Liu Y, Tan X, Scholes CP (1991) Biochemistry 30:1986–1996

    CAS  PubMed  Google Scholar 

  55. Goodin DB, Mauk AG, Smith M (1987) J Biol Chem 262:7719–7724

    CAS  PubMed  Google Scholar 

  56. Mauro JM, Fishel LA, Hazzard JT, Meyer TE, Tollin G, Cusanovich MA, Kraut J (1988) Biochemistry 27:6243–6256

    CAS  PubMed  Google Scholar 

  57. Erman JE, Vitello LB, Mauro JM, Kraut J (1989) Biochemistry 28:7992–7995

    CAS  PubMed  Google Scholar 

  58. Sivaraja M, Goodin DB, Smith M, Hoffman BM (1989) Science 245:738–740

    CAS  PubMed  Google Scholar 

  59. Pfister TD, Gengenbach AJ, Syn S, Lu Y (2001) Biochemistry 40:14942–14951

    Article  CAS  PubMed  Google Scholar 

  60. Roe JA, Goodin DB (1993) J Biol Chem 268:20037–2045

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (grants S06GM08047 and GM62211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyasu Tachikawa.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, M., Tachikawa, H., Wang, X. et al. Resonance Raman spectroscopy of cytochrome c peroxidase variants that mimic manganese peroxidase. J Biol Inorg Chem 8, 699–706 (2003). https://doi.org/10.1007/s00775-003-0460-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-003-0460-9

Keywords

Navigation