Skip to main content

Advertisement

Log in

Involvement of cell-cell and cell-matrix interactions in bone destruction induced by metastatic MDA-MB-231 human breast cancer cells in nude mice

  • Short Communication
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

To clarify the mechanisms of bone destruction associated with bone metastases, we studied an animal model in which inoculation of MDA-MB-231 human breast cancer cells into the left cardiac ventricle of female nude mice causes osteolytic lesions in bone using morphological techniques. On the bone surfaces facing the metastatic tumor cells, there existed many tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts. TRAP-positive mononuclear osteoclast precursor cells were also observed in the tumor nests. Immunohistochemical studies showed that the cancer cells produced parathyroid hormone-related protein (PTHrP) but not receptor activator of NF-κB ligand (RANKL). Histochemical and immunohistochemical examinations demonstrated that alkaline phosphatase and RANKL-positive stromal cells were frequently adjacent to TRAP-positive osteoclast-like cells. Immunoelectron microscopic observation revealed that osteoclast-like cells were in contact with RANKL-positive stromal cells. MDA-MB-231 cells and osteoclastlike cells in the tumor nests showed CD44-positive reactivity on their plasma membranes. Hyaluronan (HA) and osteopontin (OPN), the ligands for CD44, were occasionally colocalized with CD44. These results suggest that tumorproducing osteoclastogenic factors, including PTHrP, upregulate RANKL expression in bone marrow stromal cells, which in turn stimulates the differentiation and activation of osteoclasts, leading to the progression of bone destruction in the bone metastases of MDA-MB-231 cells. Because the interactions between CD44 and its ligands, HA and OPN, have been shown to upregulate osteoclast differentiation and function, in addition to the cell-cell interactions mediated by RANK and RANKL, the cell-matrix interactions mediated by these molecules may also contribute to the progression of osteoclastic bone destruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593

    Article  PubMed  CAS  Google Scholar 

  2. Yoneda T, Hiraga T (2005) Crosstalk between cancer cells and bone microenvironment in bone metastasis. Biochem Biophys Res Commun 328:679–687

    Article  PubMed  CAS  Google Scholar 

  3. Boyde A, Maconnachie E, Reid SA, Delling G, Mundy GR (1986) Scanning electron microscopy in bone pathology: review of methods, potential and applications. Scanning Electron Microsc 4:1537–1554

    Google Scholar 

  4. Hiraga T, Tanaka S, Ikegame M, Koizumi M, Iguchi H, Nakajima T, Ozawa H (1998) Morphology of bone metastasis. Eur J Cancer 34:230–239

    Article  PubMed  CAS  Google Scholar 

  5. Hiraga T, Myoui A, Choi ME, Yoshikawa H, Yoneda T (2006) Stimulation of cyclooxygenase-2 expression by bone-derived transforming growth factor β enhances bone metastases in breast cancer. Cancer Res 66:2067–2073

    Article  PubMed  CAS  Google Scholar 

  6. Ito M, Amizuka N, Tanaka S, Funatsu-Ozawa Y, Kenmotsu S, Oda K, Nakajima T, Ozawa H (2003) Ultrastructural and cytobiological studies on possible interactions between PTHrP-secreting tumor cells, stromal cells, and bone cells. J Bone Miner Metab 21: 353–362

    Article  PubMed  Google Scholar 

  7. Shimamura T, Amizuka N, Li M, Freitas PH, White JH, Henderson JE, Shingaki S, Nakajima T, Ozawa H (2005) Histological observations on the microenvironment of osteolytic bone metastasis by breast carcinoma cell line. Biomed Res 26:159–172

    Article  PubMed  CAS  Google Scholar 

  8. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20:345–357

    Article  PubMed  CAS  Google Scholar 

  9. Hofbauer LC, Neubauer A, Heufelder AE (2001) Receptor activator of nuclear factor-kappaB ligand and osteoprotegerin: potential implications for the pathogenesis and treatment of malignant bone diseases. Cancer (Phila) 92:460–470

    Article  CAS  Google Scholar 

  10. Roodman GD (2006) Regulation of osteoclast differentiation. Ann N Y Acad Sci 1068:100–109

    Article  PubMed  CAS  Google Scholar 

  11. Asagiri M, Takayanagi H (2007) The molecular understanding of osteoclast differentiation. Bone (NY) 40:251–264

    CAS  Google Scholar 

  12. Southby J, Kissin MW, Danks JA, Hayman JA, Moseley JM, Henderson MA, Bennett RC, Martin TJ (1990) Immunohistochemical localization of parathyroid hormone-related protein in human breast cancer. Cancer Res 50:7710–7716

    PubMed  CAS  Google Scholar 

  13. Guise TA, Yin JJ, Taylor SD, Kumagai Y, Dallas M, Boyce BF, Yoneda T, Mundy GR (1996) Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest 98:1544–1549

    Article  PubMed  CAS  Google Scholar 

  14. Thomas RJ, Guise TA, Yin JJ, Elliott J, Horwood NJ, Martin TJ, Gillespie MT (1999) Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology 140:4451–4458

    Article  PubMed  CAS  Google Scholar 

  15. Kitazawa S, Kitazawa R (2002) RANK ligand is a prerequisite for cancer-associated osteolytic lesions. J Pathol 198:228–236

    Article  PubMed  CAS  Google Scholar 

  16. McHugh KP, Shen Z, Crotti TN, Flannery MR, Fajardo R, Bierbaum BE, Goldring SR (2007) Role of cell-matrix interactions in osteoclast differentiation. Adv Exp Med Biol 602:107–111

    Article  PubMed  CAS  Google Scholar 

  17. Nakamura I, Cuong le T, Rodan SB, Rodan GA (2007) Involvement of αvβ3 integrins in osteoclast function. J Bone Miner Metab 25:337–344

    Article  PubMed  CAS  Google Scholar 

  18. Nakamura H, Kenmotsu S, Sakai H, Ozawa H (1995) Localization of CD44, the hyaluronate receptor, on the plasma membrane of osteocytes and osteoclasts in rat tibiae. Cell Tissue Res 280: 225–233

    PubMed  CAS  Google Scholar 

  19. Draffin JE, McFarlane S, Hill A, Johnston PG, Waugh DJ (2004) CD44 potentiates the adherence of metastatic prostate and breast cancer cells to bone marrow endothelial cells. Cancer Res 64:5702–5711

    Article  PubMed  CAS  Google Scholar 

  20. Bajorath J (2000) Molecular organization, structural features, and ligand binding characteristics of CD44, a highly variable cell surface glycoprotein with multiple functions. Proteins 39:103–111

    Article  PubMed  CAS  Google Scholar 

  21. Turley EA, Noble PW, Bourguignon LY (2002) Signaling properties of hyaluronan receptors. J Biol Chem 277:4589–4592

    Article  PubMed  CAS  Google Scholar 

  22. Kania JR, Kehat-Stadler T, Kupfer SR (1997) CD44 antibodies inhibit osteoclast formation. J Bone Miner Res 12:1155–1164

    Article  PubMed  CAS  Google Scholar 

  23. de Vries TJ, Schoenmaker T, Beertsen W, van der Neut R, Everts V (2005) Effect of CD44 deficiency on in vitro and in vivo osteoclast formation (2005) J Cell Biochem 94:954–966

    Article  PubMed  Google Scholar 

  24. Ariyoshi W, Takahashi T, Kanno T, Ichimiya H, Takano H, Koseki T, Nishihara T (2005) Mechanisms involved in enhancement of osteoclast formation and function by low molecular weight hyaluronic acid. J Biol Chem 280:18967–18972

    Article  PubMed  CAS  Google Scholar 

  25. Rittking SR, Matsumoto HN, McKee MD, An XR, Novick KE, Kowalski AJ, Noda M, Denhardt DT (1998) Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro. J Bone Miner Res 13: 1101–1111

    Article  Google Scholar 

  26. Chellaiah MA, Kizer N, Biswas R, Alvarez U, Strauss-Schoenberger J, Rifas L, Rittling SR, Denhardt DT, Hruska KA (2003) Osteopontin deficiency produces osteoclast dysfunction due to reduced CD44 surface expression. Mol Biol Cell 14:173–189

    Article  PubMed  CAS  Google Scholar 

  27. Cao JJ, Singleton PA, Majumdar S, Boudignon B, Burghardt A, Kurimoto P, Wronski TJ, Bourguignon LY, Halloran BP (2005) Hyaluronan increases RANKL expression in bone marrow stromal cells through CD44. J Bone Miner Res 20:30–40

    Article  PubMed  CAS  Google Scholar 

  28. Nakamura H, Kato R, Hirata A, Inoue M, Yamamoto T (2005) Localization of CD44 (hyaluronan receptor) and hyaluronan in rat mandibular condyle. J Histochem Cytochem 53:113–120

    Article  PubMed  CAS  Google Scholar 

  29. Ohyama Y, Nemoto H, Rittling S, Tsuji K, Amagasa T, Denhardt DT, Nifuji A, Noda M (2004) Osteopontin-deficiency suppresses growth of B16 melanoma cell implanted in bone and osteoclastogenesis in co-cultures. J Bone Miner Res 19:1706–1711

    Article  PubMed  CAS  Google Scholar 

  30. Spessotto P, Rossi FM, Degan M, Di Francia R, Perris R, Colombatti A, Gattei V (2002) Hyaluronan-CD44 interaction hampers migration of osteoclast-like cells by down-regulating MMP-9. J Cell Biol 158:1133–1144

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Nakamura.

About this article

Cite this article

Nakamura, H., Hiraga, T., Ninomiya, T. et al. Involvement of cell-cell and cell-matrix interactions in bone destruction induced by metastatic MDA-MB-231 human breast cancer cells in nude mice. J Bone Miner Metab 26, 642–647 (2008). https://doi.org/10.1007/s00774-008-0857-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-008-0857-1

Key words

Navigation