Skip to main content
Log in

Epigenetik in der Onkologie

Von Gen-Umwelt Interaktionen zu neuen Medikamenten

  • forschung
  • Published:
Wiener klinisches Magazin Aims and scope

Zusammenfassung

Epigenetik befasst sich mit vererbbaren Chromatinstrukturen und Genexpressionsmustern, die nicht auf Alterationen im Genom selbst beruhen. Epigenetische Prozesse steuern dabei die Entstehung der über 200 unterschiedlichen Zelltypen im menschlichen Körper, welche alle idente genetische Information tragen. Dieselben Vorgänge tragen zur Initiierung und zum Verlauf von Krebserkrankungen bei, auch wenn solche immer mit Veränderungen der DNA Sequenz verbunden sind. Wir beschreiben das Wechselspiel zwischen Genetik und Epigenetik und zeigen, dass Veränderungen in der Chromatinstruktur und Genexpression Ursache, Mediator und Konsequenz von genomischen Instabilitäten sein können. Chromatinmodifizierende Enzyme sind demnach potentielle Targets für die Entwicklung neuer Therapeutika. Substanzen für zwei Enzymklassen ­ HistonDeacetylasen und DNAMethyltransferasen ­ sind bereits in der Onkologie zugelassen und eine Vielzahl neuer Wirkstoffe ist momentan in präklinischer und klinischer Entwicklung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Allis CD, Jenuwein T, & Reinberg D (2007) Epigenetics (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.) pp x, 502 p.

    Google Scholar 

  2. Luger K, Mader AW, Richmond RK, Sargent DF, & Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389(6648):251–260 (in eng). sai]3._Talbert PB & Henikoff S (2010) Histone variants-ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 11(4):264–275 (in eng).

    Article  PubMed  CAS  Google Scholar 

  3. Baylin SB & Jones PA (2011) A decade of exploring the cancer epigenome — biological and translational implications. Nat Rev Cancer 11(10):726–734 (in eng).

    Article  PubMed  CAS  Google Scholar 

  4. Kriaucionis S & Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324(5929):929–930 (in eng)

    Article  PubMed  CAS  Google Scholar 

  5. Tahiliani M, et al. (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324(5929):930–935 (in eng).

    Article  PubMed  CAS  Google Scholar 

  6. Wu H & Zhang Y (2011) Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev 25(23):2436–2452 (in eng).

    Article  PubMed  CAS  Google Scholar 

  7. Tan M, et al. (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146(6):1016–1028 (in eng).

    Article  PubMed  CAS  Google Scholar 

  8. Jenuwein T & Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080 (in eng).

    Article  PubMed  CAS  Google Scholar 

  9. Schreiber SL & Bernstein BE (2002) Signaling network model of chromatin. Cell 111(6):771–778 (in eng).

    Article  PubMed  CAS  Google Scholar 

  10. Arrowsmith CH, Bountra C, Fish PV, Lee K, & Schapira M (2012) Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 11(5):384–400 (in eng).

    Article  PubMed  CAS  Google Scholar 

  11. Hargreaves DC & Crabtree GR (2011) ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 21(3):396–420 (in eng).

    Article  PubMed  CAS  Google Scholar 

  12. Hanahan D & Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674 (in eng).

    Article  PubMed  CAS  Google Scholar 

  13. Hanahan D & Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70 (in eng).

    Article  PubMed  CAS  Google Scholar 

  14. Blech J (2010) Der Sieg über die Gene: Das Gedächtnis des Körpers. Der Spiegel 32:110.

    Google Scholar 

  15. Pogribny IP, et al. (2009) Role of DNA damage and alterations in cytosine DNA methylation in rat liver carcinogenesis induced by a methyl-deficient diet. Mutat Res 669(1–2):56–62 (in eng).

    PubMed  CAS  Google Scholar 

  16. Poirier LA (1994) Methyl group deficiency in hepatocarcinogenesis. Drug Metab Rev 26(1–2):185–199 (in eng).

    Article  PubMed  CAS  Google Scholar 

  17. Feinberg AP & Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4(2):143–153 (in eng).

    Article  PubMed  CAS  Google Scholar 

  18. Hardy TM & Tollefsbol TO (2011) Epigenetic diet: impact on the epigenome and cancer. Epigenomics 3(4):503–518 (in eng).

    Article  PubMed  CAS  Google Scholar 

  19. Shyh-Chang N, et al. (2012) Influence of Threonine Metabolism on S-Adenosylmethionine and Histone Methylation. Science (in Eng).

  20. Yan H, et al. (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773 (in eng).

    Article  PubMed  CAS  Google Scholar 

  21. Mardis ER, et al. (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361(11):1058–1066 (in eng).

    Article  PubMed  CAS  Google Scholar 

  22. Dang L, et al. (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462(7274):739–744 (in eng).

    Article  PubMed  CAS  Google Scholar 

  23. Xu W, et al. (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19(1):17–30 (in eng).

    Article  PubMed  CAS  Google Scholar 

  24. Sasaki M, et al. (2012) D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. Genes Dev 26(18):2038–2049 (in eng).

    Article  PubMed  CAS  Google Scholar 

  25. Sasaki M, et al. (2012) IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 488(7413):656–659 (in eng).

    Article  PubMed  CAS  Google Scholar 

  26. Dawson MA & Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27 (in eng).

    Article  PubMed  CAS  Google Scholar 

  27. Kooistra SM & Helin K (2012) Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol 13(5):297–311 (in eng).

    Article  PubMed  CAS  Google Scholar 

  28. Greer EL & Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13(5):343–357 (in eng).

    Article  PubMed  CAS  Google Scholar 

  29. You JS & Jones PA (2012) Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 22(1):9–20 (in eng).

    Article  PubMed  CAS  Google Scholar 

  30. Chi P, Allis CD, & Wang GG (2010) Covalent histone modifications-miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 10(7):457–469 (in eng).

    Article  PubMed  CAS  Google Scholar 

  31. Krivtsov AV & Armstrong SA (2007) MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 7(11):823–833 (in eng).

    Article  PubMed  CAS  Google Scholar 

  32. Bernt KM & Armstrong SA (2011) Targeting epigenetic programs in MLL-rearranged leukemias. Hematology Am Soc Hematol Educ Program 2011:354–360 (in eng).

    Article  PubMed  Google Scholar 

  33. Wang GG, et al. (2009) Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature 459(7248):847–851 (in eng).

    Article  PubMed  CAS  Google Scholar 

  34. Margueron R & Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469(7330):343–349 (in eng).

    Article  PubMed  CAS  Google Scholar 

  35. Morin RD, et al. (2011) Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476(7360):298–303 (in eng).

    Article  PubMed  CAS  Google Scholar 

  36. Sneeringer CJ, et al. (2010) Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci U S A 107(49):20980–20985 (in eng).

    Article  PubMed  CAS  Google Scholar 

  37. French CA (2010) Demystified molecular pathology of NUT midline carcinomas. J Clin Pathol 63(6):492–496 (in eng).

    Article  PubMed  Google Scholar 

  38. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12(12):861–874 (in eng).

    Article  PubMed  CAS  Google Scholar 

  39. Allis CD & Muir TW (2011) Spreading chromatin into chemical biology. Chembiochem 12(2):264–279 (in eng).

    Article  PubMed  CAS  Google Scholar 

  40. Copeland RA, Solomon ME, & Richon VM (2009) Protein methyltransferases as a target class for drug discovery. Nat Rev Drug Discov 8(9):724–732 (in eng).

    Article  PubMed  CAS  Google Scholar 

  41. Fierz B & Muir TW (2012) Chromatin as an expansive canvas for chemical biology. Nat Chem Biol 8(5):417–427 (in eng).

    Article  PubMed  CAS  Google Scholar 

  42. Biel M, Wascholowski V, & Giannis A (2005) Epigenetics-an epicenter of gene regulation: histones and histone-modifying enzymes. Angew Chem Int Ed Engl 44(21):3186–3216 (in eng).

    Article  PubMed  CAS  Google Scholar 

  43. Voigt P & Reinberg D (2011) Histone tails: ideal motifs for probing epigenetics through chemical biology approaches. Chembiochem 12(2):236–252 (in eng).

    Article  PubMed  CAS  Google Scholar 

  44. Geutjes EJ, Bajpe PK, & Bernards R (2012) Targeting the epigenome for treatment of cancer. Oncogene 31(34):3827–3844 (in eng).

    Article  PubMed  CAS  Google Scholar 

  45. Marks PA (2007) Discovery and development of SAHA as an anticancer agent. Oncogene 26(9):1351–1356 (in eng).

    Article  PubMed  CAS  Google Scholar 

  46. Campas-Moya C (2009) Romidepsin for the treatment of cutaneous T-cell lymphoma. Drugs Today (Barc) 45(11):787–795 (in eng).

    Google Scholar 

  47. Nebbioso A, Carafa V, Benedetti R, & Altucci L (2012) Trials with ‘epigenetic’ drugs: An update. Mol Oncol (in Eng).

  48. Bradner JE, et al. (2010) Chemical phylogenetics of histone deacetylases. Nat Chem Biol 6(3):238–243 (in Eng).

    Article  PubMed  CAS  Google Scholar 

  49. Kubicek S, et al. (2012) Chromatin-targeting small molecules cause class-specific transcriptional changes in pancreatic endocrine cells. Proc Natl Acad Sci U S A 109(14):5364–5369 (in eng).

    Article  PubMed  CAS  Google Scholar 

  50. Issa JP & Kantarjian HM (2009) Targeting DNA methylation. Clin Cancer Res 15(12):3938–3946 (in eng).

    Article  PubMed  CAS  Google Scholar 

  51. Filippakopoulos P, et al. (2010) Selective inhibition of BET bromodomains. Nature 468(7327):1067–1073 (in eng).

    Article  PubMed  CAS  Google Scholar 

  52. Nicodeme E, et al. (2010) Suppression of inflammation by a synthetic histone mimic. Nature 468(7327):1119–1123 (in eng).

    Article  PubMed  CAS  Google Scholar 

  53. Dawson MA, et al. (2011) Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478(7370):529–533 (in eng).

    Article  PubMed  CAS  Google Scholar 

  54. Zuber J, et al. (2011) RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478(7370):524–528 (in eng).

    Article  PubMed  CAS  Google Scholar 

  55. Mertz JA, et al. (2011) Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci U S A 108(40):16669–16674 (in eng).

    Article  PubMed  CAS  Google Scholar 

  56. Delmore JE, et al. (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146(6):904–917 (in eng).

    Article  PubMed  CAS  Google Scholar 

  57. Kubicek S, et al. (2007) Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 25(3):473–481 (in eng).

    Article  PubMed  CAS  Google Scholar 

  58. Vedadi M, et al. (2011) A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells. Nat Chem Biol 7(8):566–574 (in eng).

    Article  PubMed  CAS  Google Scholar 

  59. Copeland RA, Moyer MP, & Richon VM (2012) Targeting genetic alterations in protein methyltransferases for personalized cancer therapeutics. Oncogene (in Eng).

  60. McCabe MT, et al. (2012) EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature (in Eng).

  61. Knutson SK, et al. (2012) A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 8(11):890–896 (in eng).

    PubMed  CAS  Google Scholar 

  62. Luo X, et al. (2011) A selective inhibitor and probe of the cellular functions of Jumonji C domain-containing histone demethylases. J Am Chem Soc 133(24):9451–9456 (in eng).

    Article  PubMed  CAS  Google Scholar 

  63. Kruidenier L, et al. (2012) A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 488(7411):404–408 (in eng).

    Article  PubMed  CAS  Google Scholar 

  64. van Haaften G, et al. (2009) Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet 41(5):521–523 (in eng).

    Article  PubMed  Google Scholar 

  65. Bock C (2009) Epigenetic biomarker development. Epigenomics 1(1):99–110 (in eng).

    Article  PubMed  CAS  Google Scholar 

  66. Sandoval J & Esteller M (2012) Cancer epigenomics: beyond genomics. Curr Opin Genet Dev 22(1):50–55 (in eng).

    Article  PubMed  CAS  Google Scholar 

  67. Esteller M, et al. (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343(19):1350–1354 (in eng).

    Article  PubMed  CAS  Google Scholar 

  68. Fernandez AF, et al. (2012) A DNA methylation fingerprint of 1628 human samples. Genome Res 22(2):407–419 (in eng).

    Article  PubMed  CAS  Google Scholar 

  69. Seligson DB, et al. (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435(7046):1262–1266 (in eng).

    Article  PubMed  CAS  Google Scholar 

  70. Herceg Z & Hainaut P (2007) Genetic and epigenetic alterations as biomarkers for cancer detection, diagnosis and prognosis. Mol Oncol 1(1):26–41 (in eng).

    Article  PubMed  CAS  Google Scholar 

  71. Fathi AT, et al. (2012) Prospective serial evaluation of 2-hydroxyglutarate, during treatment of newly diagnosed acute myeloid leukemia, to assess disease activity and therapeutic response. Blood (in Eng).

  72. Nicholls SJ, et al. (2012) ApoA-I induction as a potential cardioprotective strategy: rationale for the SUSTAIN and ASSURE studies. Cardiovasc Drugs Ther 26(2):181–187 (in eng).

    Article  PubMed  CAS  Google Scholar 

  73. Matzuk MM, et al. (2012) Small-molecule inhibition of BRDT for male contraception. Cell 150(4):673–684 (in eng).

    Article  PubMed  CAS  Google Scholar 

  74. Orkin SH & Hochedlinger K (2011) Chromatin connections to pluripotency and cellular reprogramming. Cell 145(6):835–850 (in eng).

    Article  PubMed  CAS  Google Scholar 

  75. Lehner B, Crombie C, Tischler J, Fortunato A, & Fraser AG (2006) Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nat Genet 38(8):896–903 (in eng).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kubicek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubicek, S., Schirghuber, E., Klepsch, F. et al. Epigenetik in der Onkologie. Wien klin Mag 15, 10–18 (2012). https://doi.org/10.1007/s00740-012-0059-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00740-012-0059-2

Navigation