Skip to main content

Advertisement

Log in

Effects of essential amino acids or glutamine deprivation on intestinal permeability and protein synthesis in HCT-8 cells: involvement of GCN2 and mTOR pathways

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

GCN2 and mTOR pathways are involved in the regulation of protein metabolism in response to amino acid availability in different tissues. However, regulation at intestinal level is poorly documented. The aim of the study was to evaluate the effects of a deprivation of essential amino acids (EAA) or glutamine (Gln) on these pathways in intestinal epithelial cells. Intestinal epithelial cell, HCT-8, were incubated during 6 h with 1/DMEM culture medium containing EAA, non EAA and Gln, 2/with saline as positive control of nutritional deprivation, 3/DMEM without EAA, 4/DMEM without Gln or 5/DMEM without Gln and supplemented with a glutamine synthase inhibitor (MSO, 4 mM). Intestinal permeability was evaluated by the measure of transepithelial electric resistance (TEER). Using [L-2H3]-leucine incorporation, fractional synthesis rate (FSR) was calculated from the assessed enrichment in proteins and free amino acid pool by GCMS. Expression of eiF2α (phosphorylated or not), used as marker of GCN2 pathway, and of 4E-BP1 (phosphorylated or not), used as a marker of mTOR pathway, was evaluated by immunoblot. Results were compared by ANOVA. Six-hours EAA deprivation did not significantly affect TEER and FSR but decreased p-4E-BP1 and increased p-eiF2α. In contrast, Gln deprivation decreased FSR and p-4E-BP1. MSO induced a marked decrease of TEER and FSR and an increase of p-eiF2α, whereas mTOR pathway remained activated. These results suggest that both mTOR and GCN2 pathways can mediate the limiting effects of Gln deprivation on protein synthesis according to its severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EAA:

Essential amino acid

eaaF:

Essential amino acid-free medium

GlnF:

Glutamine-free medium

GlnF(+):

Glutamine-free medium supplemented with glutamine synthase inhibitor

MSO:

Methionine sulfoximine

References

  • Adegoke OA, McBurney MI, Samuels SE, Baracos VE (2003) Modulation of intestinal protein synthesis and protease mrna by luminal and systemic nutrients. Am J Physiol Gastrointest Liver Physiol 284(6):G1017–G1026

    PubMed  CAS  Google Scholar 

  • Boukhettala N, Leblond J, Claeyssens S, Faure M, Le Pessot F, Bole-Feysot C, Hassan A, Mettraux C, Vuichoud J, Lavoinne A, Breuille D, Dechelotte P, Coeffier M (2009) Methotrexate induces intestinal mucositis and alters gut protein metabolism independently of reduced food intake. Am J Physiol Endocrinol Metab 296(1):E182–E190

    Article  PubMed  CAS  Google Scholar 

  • Boukhettala N, Ibrahim A, Claeyssens S, Faure M, Le Pessot F, Vuichoud J, Lavoinne A, Breuille D, Dechelotte P, Coeffier M (2010) A diet containing whey protein, glutamine, and tgfbeta modulates gut protein metabolism during chemotherapy-induced mucositis in rats. Dig Dis Sci 55(8):2172–2181

    Article  PubMed  CAS  Google Scholar 

  • Bouteloup-Demange C, Boirie Y, Dechelotte P, Gachon P, Beaufrere B (1998) Gut mucosal protein synthesis in fed and fasted humans. Am J Physiol 274(3 Pt 1):E541–E546

    PubMed  CAS  Google Scholar 

  • Bouteloup-Demange C, Claeyssens S, Maillot C, Lavoinne A, Lerebours E, Dechelotte P (2000) Effects of enteral glutamine on gut mucosal protein synthesis in healthy humans receiving glucocorticoids. Am J Physiol Gastrointest Liver Physiol 278(5):G677–G681

    PubMed  CAS  Google Scholar 

  • Chotechuang N, Azzout-Marniche D, Bos C, Chaumontet C, Gausseres N, Steiler T, Gaudichon C, Tome D (2009) mTOR, AMPK, and GCN2 coordinate the adaptation of hepatic energy metabolic pathways in response to protein intake in the rat. Am J Physiol Endocrinol Metab 297(6):E1313–E1323

    Article  PubMed  CAS  Google Scholar 

  • Coeffier M, Dechelotte P (2009) Potential mechanisms of action of glutamine in critically ill patients. Nutrition Clinique Et Metabolisme 23(3):133–136

    Article  CAS  Google Scholar 

  • Coeffier M, Claeyssens S, Hecketsweiler B, Lavoinne A, Ducrotte P, Dechelotte P (2003) Enteral glutamine stimulates protein synthesis and decreases ubiquitin mrna level in human gut mucosa. Am J Physiol Gastrointest Liver Physiol 285(2):G266–G273

    PubMed  CAS  Google Scholar 

  • Coeffier M, Claeyssens S, Lecleire S, Leblond J, Coquard A, Bole-Feysot C, Lavoinne A, Ducrotte P, Dechelotte P (2008) Combined enteral infusion of glutamine, carbohydrates, and antioxidants modulates gut protein metabolism in humans. Am J Clin Nutr 88(5):1284–1290

    PubMed  CAS  Google Scholar 

  • Coeffier M, Gloro R, Boukhettala N, Aziz M, Lecleire S, Vandaele N, Antonietti M, Savoye G, Bole-Feysot C, Dechelotte P, Reimund JM, Ducrotte P (2010) Increased proteasome-mediated degradation of occludin in irritable bowel syndrome. Am J Gastroenterol 105(5):1181–1188

    Article  PubMed  CAS  Google Scholar 

  • Corl BA, Odle J, Niu X, Moeser AJ, Gatlin LA, Phillips OT, Blikslager AT, Rhoads JM (2008) Arginine activates intestinal p70(s6k) and protein synthesis in piglet rotavirus enteritis. J Nutr 138(1):24–29

    PubMed  CAS  Google Scholar 

  • Crozier SJ, Vary TC, Kimball SR, Jefferson LS (2005) Cellular energy status modulates translational control mechanisms in ischemic-reperfused rat hearts. Am J Physiol Heart Circ Physiol 289(3):H1242–H1250

    Article  PubMed  CAS  Google Scholar 

  • Deval C, Talvas J, Chaveroux C, Maurin AC, Mordier S, Cherasse Y, Parry L, Carraro V, Jousse C, Bruhat A, Fafournoux P (2008) Amino-acid limitation induces the GCN2 signaling pathway in myoblasts but not in myotubes. Biochimie 90(11–12):1716–1721

    Article  PubMed  CAS  Google Scholar 

  • Drogat B, Bouchecareilh M, North S, Petibois C, Deleris G, Chevet E, Bikfalvi A, Moenner M (2007) Acute l-glutamine deprivation compromises vegf-a upregulation in a549/8 human carcinoma cells. J Cell Physiol 212(2):463–472

    Article  PubMed  CAS  Google Scholar 

  • El Yousfi M, Breuille D, Papet I, Blum S, Andre M, Mosoni L, Denis P, Buffiere C, Obled C (2003) Increased tissue protein synthesis during spontaneous inflammatory bowel disease in hla-b27 rats. Clin Sci (Lond) 105(4):437–446

    Article  CAS  Google Scholar 

  • Faure M, Moennoz D, Montigon F, Mettraux C, Breuille D, Ballevre O (2005) Dietary threonine restriction specifically reduces intestinal mucin synthesis in rats. J Nutr 135(3):486–491

    PubMed  CAS  Google Scholar 

  • Higashiguchi T, Hasselgren PO, Wagner K, Fischer JE (1993) Effect of glutamine on protein synthesis in isolated intestinal epithelial cells. JPEN J Parenter Enteral Nutr 17(4):307–314

    Article  PubMed  CAS  Google Scholar 

  • Hu S, Claud EC, Musch MW, Chang EB (2010) Stress granule formation mediates the inhibition of colonic hsp70 translation by interferon-gamma and tumor necrosis factor-alpha. Am J Physiol Gastrointest Liver Physiol 298(4):G481–G492

    Article  PubMed  CAS  Google Scholar 

  • Hubert-Buron A, Leblond J, Jacquot A, Ducrotte P, Dechelotte P, Coeffier M (2006) Glutamine pretreatment reduces il-8 production in human intestinal epithelial cells by limiting ikappabalpha ubiquitination. J Nutr 136(6):1461–1465

    PubMed  CAS  Google Scholar 

  • Humbert B, Nguyen P, Dumon H, Deschamps JY, Darmaun D (2002) Does enteral glutamine modulate whole-body leucine kinetics in hypercatabolic dogs in a fed state? Metabolism 51(5):628–635

    Article  PubMed  CAS  Google Scholar 

  • Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584(7):1287–1295

    Article  PubMed  CAS  Google Scholar 

  • Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL (2008) Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10(8):935–945

    Article  PubMed  CAS  Google Scholar 

  • Le Bacquer O, Nazih H, Blottiere H, Meynial-Denis D, Laboisse C, Darmaun D (2001) Effects of glutamine deprivation on protein synthesis in a model of human enterocytes in culture. Am J Physiol Gastrointest Liver Physiol 281(6):G1340–G1347

    PubMed  CAS  Google Scholar 

  • Le Bacquer O, Laboisse C, Darmaun D (2003) Glutamine preserves protein synthesis and paracellular permeability in caco-2 cells submitted to “Luminal fasting”. Am J Physiol Gastrointest Liver Physiol 285(1):G128–G136

    PubMed  CAS  Google Scholar 

  • Leblond J, Hubert-Buron A, Bole-Feysot C, Ducrotte P, Dechelotte P, Coeffier M (2006) Regulation of proteolysis by cytokines in the human intestinal epithelial cell line hct-8: Role of ifngamma. Biochimie 88(7):759–765

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Ryu H, Ferrante RJ, Morris SM Jr, Ratan RR (2003) Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proc Natl Acad Sci USA 100(8):4843–4848

    Article  PubMed  CAS  Google Scholar 

  • Li N, Neu J (2009) Glutamine deprivation alters intestinal tight junctions via a pi3-k/akt mediated pathway in caco-2 cells. J Nutr 139(4):710–714

    Article  PubMed  CAS  Google Scholar 

  • Li N, Lewis P, Samuelson D, Liboni K, Neu J (2004) Glutamine regulates caco-2 cell tight junction proteins. Am J Physiol Gastrointest Liver Physiol 287(3):G726–G733

    Article  PubMed  CAS  Google Scholar 

  • Marion R, Coeffier M, Lemoulan S, Gargala G, Ducrotte P, Dechelotte P (2005) l-arginine modulates cxc chemokines in the human intestinal epithelial cell line hct-8 by the no pathway. Biochimie 87(12):1048–1055

    Article  PubMed  CAS  Google Scholar 

  • Maurin AC, Jousse C, Averous J, Parry L, Bruhat A, Cherasse Y, Zeng H, Zhang Y, Harding HP, Ron D, Fafournoux P (2005) The GCN2 kinase biases feeding behavior to maintain amino acid homeostasis in omnivores. Cell Metab 1(4):273–277

    Article  PubMed  CAS  Google Scholar 

  • Nakajo T, Yamatsuji T, Ban H, Shigemitsu K, Haisa M, Motoki T, Noma K, Nobuhisa T, Matsuoka J, Gunduz M, Yonezawa K, Tanaka N, Naomoto Y (2005) Glutamine is a key regulator for amino acid-controlled cell growth through the mTOR signaling pathway in rat intestinal epithelial cells. Biochem Biophys Res Commun 326(1):174–180

    Article  PubMed  CAS  Google Scholar 

  • Nakshabendi IM, Downie S, Russell RI, Rennie MJ (1996) Increased rates of duodenal mucosal protein synthesis in vivo in patients with untreated coelia disease. Gut 39(2):176–179

    Article  PubMed  CAS  Google Scholar 

  • Reinert RB, Oberle LM, Wek SA, Bunpo P, Wang XP, Mileva I, Goodwin LO, Aldrich CJ, Durden DL, McNurlan MA, Wek RC, Anthony TG (2006) Role of glutamine depletion in directing tissue-specific nutrient stress responses to l-asparaginase. J Biol Chem 281(42):31222–31233

    Article  PubMed  CAS  Google Scholar 

  • Rhoads MJ, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37(1):111–122

    Article  CAS  Google Scholar 

  • Rhoads JM, Niu X, Odle J, Graves LM (2006) Role of mTOR signaling in intestinal cell migration. Am J Physiol Gastrointest Liver Physiol 291(3):G510–G517

    Article  PubMed  CAS  Google Scholar 

  • Sakiyama T, Musch MW, Ropeleski MJ, Tsubouchi H, Chang EB (2009) Glutamine increases autophagy under basal and stressed conditions in intestinal epithelial cells. Gastroenterology 136(3):924–932

    Article  PubMed  CAS  Google Scholar 

  • Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320(5882):1496–1501

    Article  PubMed  CAS  Google Scholar 

  • Sido B, Seel C, Hochlehnert A, Breitkreutz R, Droge W (2006) Low intestinal glutamine level and low glutaminase activity in crohn’s disease: a rational for glutamine supplementation? Dig Dis Sci 51(12):2170–2179

    Article  PubMed  CAS  Google Scholar 

  • Tannus AF, Darmaun D, Ribas DF, Oliveira JE, Marchini JS (2009) Glutamine supplementation does not improve protein synthesis rate by the jejunal mucosa of the malnourished rat. Nutr Res 29(8):596–601

    Article  PubMed  CAS  Google Scholar 

  • Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9(11):799–809

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Qiao S, Yin Y, Yue L, Wang Z, Wu G (2007) A deficiency or excess of dietary threonine reduces protein synthesis in jejunum and skeletal muscle of young pigs. J Nutr 137(6):1442–1446

    PubMed  CAS  Google Scholar 

  • Windmueller HG, Spaeth AE (1974) Uptake and metabolism of plasma glutamine by the small intestine. J Biol Chem 249(16):5070–5079

    PubMed  CAS  Google Scholar 

  • Winter TA, O’Keefe SJ, Callanan M, Marks T (2007) Effect of severe undernutrition and subsequent refeeding on gut mucosal protein fractional synthesis in human subjects. Nutrition 23(1):29–35

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Park SH, Choi HJ, Moon Y (2010) The integrated stress response-associated signals modulates intestinal tumor cell growth by nsaid-activated gene 1 (nag-1/mic-1/ptgf-beta). Carcinogenesis 31(4):703–711

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Souba WW, Croce CM, Verne GN (2010) Microrna-29a regulates intestinal membrane permeability in patients with irritable bowel syndrome. Gut 59(6):775–784

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

NB was supported by a grant of the French Speaking Society of Clinical Nutrition and Metabolism (SFNEP) and Nutricia Clinical Nutrition (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moïse Coëffier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boukhettala, N., Claeyssens, S., Bensifi, M. et al. Effects of essential amino acids or glutamine deprivation on intestinal permeability and protein synthesis in HCT-8 cells: involvement of GCN2 and mTOR pathways. Amino Acids 42, 375–383 (2012). https://doi.org/10.1007/s00726-010-0814-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0814-x

Keywords

Navigation